<< Chapter < Page Chapter >> Page >

By the end of this section, you will be able to:

  • Explain command-and-control regulation
  • Evaluate the effectiveness of command-and-control regulation

When the United States started passing comprehensive environmental laws in the late 1960s and early 1970s, a typical law specified how much pollution could be emitted out of a smokestack or a drainpipe and imposed penalties if that limit was exceeded. Other laws required the installation of certain equipment—for example, on automobile tailpipes or on smokestacks—to reduce pollution. These types of laws, which specify allowable quantities of pollution and which also may detail which pollution-control technologies must be used, fall under the category of command-and-control regulation    . In effect, command-and-control regulation requires that firms increase their costs by installing anti-pollution equipment; firms are thus required to take the social costs of pollution into account.

Command-and-control regulation has been highly successful in protecting and cleaning up the U.S. environment. In 1970, the Environmental Protection Agency (EPA) was created to oversee all environmental laws. In the same year, the Clean Air Act was enacted to address air pollution. Just two years later, in 1972, Congress passed and the president signed the far-reaching Clean Water Act . These command-and-control environmental laws, and their amendments and updates, have been largely responsible for America’s cleaner air and water in recent decades. However, economists have pointed out three difficulties with command-and-control environmental regulation.

First, command-and-control regulation offers no incentive to improve the quality of the environment beyond the standard set by a particular law. Once the command-and-control regulation has been satisfied, polluters have zero incentive to do better.

Second, command-and-control regulation is inflexible. It usually requires the same standard for all polluters, and often the same pollution-control technology as well. This means that command-and-control regulation draws no distinctions between firms that would find it easy and inexpensive to meet the pollution standard—or to reduce pollution even further—and firms that might find it difficult and costly to meet the standard. Firms have no reason to rethink their production methods in fundamental ways that might reduce pollution even more and at lower cost.

Third, command-and-control regulations are written by legislators and the EPA, and so they are subject to compromises in the political process. Existing firms often argue (and lobby) that stricter environmental standards should not apply to them, only to new firms that wish to start production. Consequently, real-world environmental laws are full of fine print, loopholes, and exceptions.

Although critics accept the goal of reducing pollution, they question whether command-and-control regulation is the best way to design policy tools for accomplishing that goal. A different approach is the use of market-oriented tools, which are discussed in the next section.

Key concepts and summary

Command-and-control regulation sets specific limits for pollution emissions and/or specific pollution-control technologies that must be used. Although such regulations have helped to protect the environment, they have three shortcomings: they provide no incentive for going beyond the limits they set; they offer limited flexibility on where and how to reduce pollution; and they often have politically-motivated loopholes.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of economics. OpenStax CNX. Sep 19, 2014 Download for free at http://legacy.cnx.org/content/col11613/1.11
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of economics' conversation and receive update notifications?

Ask