<< Chapter < Page Chapter >> Page >


Graad 8

Rasionale getalle, sirkels en driehoeke

Module 14

Om driehoeke te klassifiseer en te konstrueer



Om driehoeke te klassifiseer, belangrike stellings rondom driehoeke te ontdek en driehoeke te konstrueer

LU 3.1 LU 3.3 LU 3.4 LU 4.2.1
  • Jy sal aan die einde van hierdie leseenheid die volgende kan doen:
  • Verstaan hoe belangrik die gebruik van driehoeke in alledaagse situasies is;
  • Vir ander mense vertel hoe om ongekende sye van ‘n reghoekige driehoek uit te werk (Pythagoras);
  • Die oppervlakte van ‘n driehoek bereken;
  • Die aksie in meetkunde geniet;
  • Wiskundige taal gebruik om wiskundige idees, begrippe en veralgemenings en denkprosesse oor te dra.

1. Wanneer jy driehoeke klassifiseer, kan jy dit doen volgens hul hoeke, of volgens hul sye.

  • Klassifikasie op grond van die hoeke van ‘n driehoek:

Kan jy die volgende voltooi?

a) Skerphoekige driehoeke is driehoeke met

b) Reghoekige driehoeke het

c) Stomphoekige driehoeke het

  • Klassifikasie op grond van die sye van die driehoek:

Kan jy die volgende voltooi?

a) ‘n Gelybenige driehoek het

b) ‘n Gelyksydige driehoek het

c) ‘n Ongelyksydige driehoek se

2. Kan jy die volgende stellings voltooi rakende driehoeke? Maak ‘n skets om elk van die stellings prakties te illustreer.


  • Die som van die binnehoeke van enige driehoek is .........................
  • Skets:


  • Die buitehoek van ‘n driehoek is
  • Skets:

3. Konstruksie van driehoeke:

  • Benodigdhede: passer, gradeboog, potlood en ‘n liniaal


  • Maak altyd eers ‘n “rowwe sketsie” van hoe dit moontlik kan lyk.
  • Begin altyd met ‘n basislyn.

3.1 Konstrueer Δ size 12{Δ} {} PQR met PQ = 7 cm, PR = 5 cm en P ˆ size 12{ { hat {P}}} {} = 70°.

a) Skets:

b) Meet nou die volgende:

1. QR = ........ 2. R ˆ size 12{ { hat {R}}} {} = ........ 3. Q ˆ size 12{ { hat {Q}}} {} = ........ 4. P ˆ + Q ˆ + R ˆ = size 12{ { hat {P}}+ { hat {Q}}+ { hat {R}}={}} {} ........

3.2 Konstrueer Δ size 12{Δ} {} KLM , ‘n gelykbenige driehoek. KM = 40 mm, KL = LM en K ˆ size 12{ { hat {K}}} {} = 75°.Dui die groottes van al die hoeke op jou skets aan.

  • Skets:


Om die stelling van Pythagoras te ontdek en die berekening van die onbekende sye deur van die stelling gebruik te maak, te bemeester

LU 4.2.1 LU 4.8 LU 4.9 LU 4.10
  • Die volgende kan ‘n groepe gedoen word.

Prakties: Maak jou eie tangram

1. Sny ‘n vierkant (10 cm x 10 cm) uit karton.

2. Trek albei hoeklyne in, want dit moet deel vorm van die basisse van sommige figure.

3. Die volledige figuur moet uit die volgende bestaan:

3.1 twee groot gelykbenige driehoeke met basisse 10 cm elk

3.2 twee kleiner gelykbenige driehoeke met basisse 5 cm elk

3.3 een medium gelykbenige driehoek met twee aangrensende sye elk 5 cm

3.4 een vierkant met hoeklyne 5 cm

3.5 een parallelogram met twee oorstaande sye 5 cm

  • Jy moet twee hiervan maak.

4. Trek nou jou grootste driehoek van jou tangram in jou werkboek na.

5. Gebruik al sewe stukke en vorm ‘n vierkant daarmee en plaas dit op die skuinssy van jou nagetrekte driehoek.

6. Gebruik nou die twee grootste driehoeke en vorm ‘n vierkant daarmee en plaas dit op een van die reghoeksye van die nagetrekte driehoek.

7. Gebruik nou die oorblywende stukke en vorm ‘n vierkant daarmee en plaas dit op die ander reghoeksy.

8. Bereken die oppervlakte van elke vierkant .

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11033/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 8' conversation and receive update notifications?