<< Chapter < Page Chapter >> Page >

Weiner deconvolution

How to use the connexions document template

Our system can be described in block diagram form as:


  • f[n] = our original signal
  • h[n] = the room response
  • y[n] = measured recording in the room

Assuming the room is an LTI system, y[n] isrelated to f[n] and h[n]by discrete time convolution:


Convolution is commutative so the following also holds:

h[n] * f[n]= y[n]

Taking the Discrete Time Fourier Transform of f[n], h[n], and y[n]shows that in the frequency domain, the convolution of f[n]and h[n] is equivalent to multiplication oftheir Fourier counterparts:

F(jw) H(jw) = Y(jw)

Given a known original signal and a known measured recording, the room’s frequency response can be determinedby division in the frequency domain:

H(jw) = Y(jw) /F(jw)

Similarly, given a known room response and known measured recording, the original signal can be determined by division in the frequency domain.

F(jw) = Y(jw) /H(jw)

The inverse DTFT can then be used to determine the impulse response h[n]or the recovered signal f[n].

Room noise

The room also contains additive noise (which can be recorded). A more accurate block diagram drawing of oursystem is:

The measured recording, y[n] can be related tothe original signal, room response, and noise in frequency as:

F(jw) H(jw) + N(jw)= Y(jw)

In order to compute the room’s frequency response or the DTFT of the recovered signal, division in thefrequency domain is again performed:

H(jw) = (Y(jw) / F(jw)) – (N(jw)/ F(jw))

F(jw) = (Y(jw) / H(jw)) – (N(jw)/ H(jw))

Many of the fourier coefficients of the room response are small (especially at high frequencies), sodeconvolution has the undesirable effect of greatly amplifying the noise.

Noise reduction

An improvement upon normal deconvolution is to apply a Wiener filter before deconvolution to reduce the additive noise. The Wiener filter utilizes knowledge of thecharacteristics of the additive noise and the signal being recovered to reduce the impact of noise on deconvolution. Thisprocess is known as Wiener deconvolution . The Wiener filter’s mathematical effect on the room’s frequency response can be seenbelow:

Where “x” is the frequency variable, H(x) is the room’s frequency response, G(x) is the wiener-filtered versionof the inverse of the room response and, S(x) is the expected signal strength of the original signal f[n], and N(x) is the expected signal strength of the additive noise.

F(x) =G(x) Y(x)

Where F(x) is the DTFT of the recovered signal and Y(x) is the DTFT of the measured recording.

The following example from image processing shows effectiveness of Wiener deconvolution at reversing a blurringfilter while accounting for noise.

Because of the added S(x) and N(x) terms, Wiener deconvolution cannot be used without knowledge of theoriginal signal and noise. Voice characteristics are fairly predictable, whereas the characteristics of the room are difficultto estimate. Therefore, Wiener deconvolution can only be used when recovering the audio signal (not to determine the roomresponse).

More information on Wiener Deconvolution can be found here .

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Elec 301 projects fall 2006. OpenStax CNX. Sep 27, 2007 Download for free at http://cnx.org/content/col10462/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2006' conversation and receive update notifications?