<< Chapter < Page Chapter >> Page >
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses area and volume of geometric figures and objects. By the end of the module students should know the meaning and notation for area, know the area formulas for some common geometric figures, be able to find the areas of some common geometric figures, know the meaning and notation for volume, know the volume formulas for some common geometric objects and be able to find the volume of some common geometric objects.

Section overview

  • The Meaning and Notation for Area
  • Area Formulas
  • Finding Areas of Some Common Geometric Figures
  • The Meaning and Notation for Volume
  • Volume Formulas
  • Finding Volumes of Some Common Geometric Objects

Quite often it is necessary to multiply one denominate number by another. To do so, we multiply the number parts together and the unit parts together. For example,

8 in. 8 in. = 8 8 in. in. = 64 in. 2

4 mm 4 mm 4 mm = 4 4 4 mm mm mm = 64 mm 3

Sometimes the product of units has a physical meaning. In this section, we will examine the meaning of the products ( length unit ) 2 size 12{ \( "length unit" \) rSup { size 8{2} } } {} and ( length unit ) 3 size 12{ \( "length unit" \) rSup { size 8{3} } } {} .

The meaning and notation for area

The product ( length unit ) ( length unit ) = ( length unit ) 2 size 12{ \( "length unit" \) cdot \( "length unit" \) = \( "length unit" \) rSup { size 8{2} } } {} , or, square length unit (sq length unit), can be interpreted physically as the area of a surface.

Area

The area of a surface is the amount of square length units contained in the surface.

For example, 3 sq in. means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to be cut and rearranged so they match the shape of the surface.)

We will examine the area of the following geometric figures.

Triangles, a three-sided polygon, have a height, h, measured from bottom to top, and base, b, measured from one end to the other of the bottom side. Rectangles, a four-sided polygon, have a width, w, in this case the vertical side, and a length, l, in this case the horizontal side.
Parallelograms, a four-sided polygon with diagonal sides in the same direction have a height, h, measured as the distance from the bottom to top, and a base, b, measured as the width of the horizontal side. Trapezoids, a four-sided polygon with diagonal sides facing leaning into each other, have a height measured as the distance between the two bases. Trapezoids have two bases of differing lengths, base 1, and base 2.
Circles. The distance across the circle is the diameter. The distance from the center of the circle to the edge is the radius.

Area formulas

We can determine the areas of these geometric figures using the following formulas.

Figure Area Formula Statement
A triangle. Triangle A T = 1 2 b h size 12{A rSub { size 8{T} } = { {1} over {2} } cdot b cdot h} {} Area of a triangle is one half the base times the height.
A rectangle. Rectangle A R = l w size 12{A rSub { size 8{R} } =l cdot w} {} Area of a rectangle is the length times the width.
A parallelogram. Parallelogram A P = b h size 12{A rSub { size 8{P} } =b cdot h} {} Area of a parallelogram is base times the height.
A trapezoid. Trapezoid A Trap = 1 2 ( b 1 + b 2 ) h size 12{A rSub { size 8{ ital "Trap"} } = { {1} over {2} } cdot \( b rSub { size 8{1} } +b rSub { size 8{2} } \) cdot h} {} Area of a trapezoid is one half the sum of the two bases times the height.
A circle. Circle A C = π r 2 size 12{A rSub { size 8{C} } =πr rSup { size 8{2} } } {} Area of a circle is π times the square of the radius.

Finding areas of some common geometric figures

Sample set a

Find the area of the triangle.

A triangle with height 6 feet and length 20 feet.

A T = 1 2 b h = 1 2 20 6   sq ft = 10 6   sq ft = 60 sq ft = 60 ft 2

The area of this triangle is 60 sq ft, which is often written as 60 ft 2 .

Got questions? Get instant answers now!

Find the area of the rectangle.

A rectangle with width 4 feet 2 inches and height 8 inches.

Let's first convert 4 ft 2 in. to inches. Since we wish to convert to inches, we'll use the unit fraction 12 in . 1 ft size 12{ { {"12 in" "." } over {"1 ft"} } } {} since it has inches in the numerator. Then,

4 ft = 4 ft 1 12 in . 1 ft = 4 ft 1 12 in . 1 ft = 48 in .

Thus, 4 ft 2 in . = 48 in . + 2 in . = 50 in . size 12{"4 ft 2 in" "." =" 48 in" "." +" 2 in" "." =" 50 in" "." } {}

A R = l w = 50   in . 8 in . = 400 sq in .

The area of this rectangle is 400 sq in.

Got questions? Get instant answers now!

Find the area of the parallelogram.

A parallelogram with base 10.3cm and height 6.2cm

A P = b h = 10 . 3   cm 6 . 2 cm = 63 . 86 sq cm

The area of this parallelogram is 63.86 sq cm.

Got questions? Get instant answers now!

Find the area of the trapezoid.

A trapezoid with height 4.1mm, bottom base 20.4mm, and top base 14.5mm.

A Trap = 1 2 b 1 + b 2 h = 1 2 14.5 mm + 20.4 mm 4.1 mm = 1 2 34.9 mm 4.1 mm = 1 2 143.09 sq mm = 71.545 sq mm

The area of this trapezoid is 71.545 sq mm.

Got questions? Get instant answers now!

Find the approximate area of the circle.

A circle with radius 16.8ft.

A c = π r 2 ( 3.14 ) 16.8 ft 2 3.14 282.24 sq ft 888.23 sq ft

The area of this circle is approximately 886.23 sq ft.

Got questions? Get instant answers now!

Practice set a

Find the area of each of the following geometric figures.

The meaning and notation for volume

The product ( length unit ) ( length unit ) ( length unit ) = ( length unit ) 3 size 12{ \( "length unit" \) " " \( "length unit" \) " " \( "length unit" \) = \( "length unit" \) rSup { size 8{3} } } {} , or cubic length unit (cu length unit), can be interpreted physically as the volume of a three-dimensional object.

Volume

The volume of an object is the amount of cubic length units contained in the object.

For example, 4 cu mm means that 4 cubes, 1 mm on each side, would precisely fill some three-dimensional object. (The cubes may have to be cut and rearranged so they match the shape of the object.)

A rectangular solid, with length l, width w, and height h. A sphere with radius r.
A cylinder with height h and radius r. A cone with height h and radius r.

Volume formulas

Figure Volume Formula Statement
A rectangular solid. Rectangular solid V R = l w h = area of base height The volume of a rectangular solid is the length times the width times the height.
A sphere. Sphere V S = 4 3 π r 3 size 12{V rSub { size 8{S} } = { {4} over {3} } cdot π cdot r rSup { size 8{3} } } {} The volume of a sphere is 4 3 size 12{ { {4} over {3} } } {} times π times the cube of the radius.
A cylinder. Cylinder V Cyl = π r 2 h = area of base height The volume of a cylinder is π times the square of the radius times the height.
A cone. Cone V c = 1 3 π r 2 h = area of base height The volume of a cone is 1 3 size 12{ { {1} over {3} } } {} times π times the square of the radius times the height.

Finding volumes of some common geometric objects

Sample set b

Find the volume of the rectangular solid.

A rectangular solid with width 9in, length 10in, and height 3in.

V R = l w h = 9 in. 10 in. 3 in. = 270 cu in. = 270 in. 3

The volume of this rectangular solid is 270 cu in.

Got questions? Get instant answers now!

Find the approximate volume of the sphere.

A circle with radius 6cm.

V S = 4 3 π r 3 4 3 3.14 6 cm 3 4 3 3.14 216 cu cm 904.32 cu cm

The approximate volume of this sphere is 904.32 cu cm, which is often written as 904.32 cm 3 .

Got questions? Get instant answers now!

Find the approximate volume of the cylinder.

A cylinder with radius 4.9ft and height 7.8ft.

V Cyl = π r 2 h 3.14 4.9 ft 2 7.8 ft 3.14 24.01 sq ft 7.8 ft 3.14 187.278 cu ft 588.05292 cu ft

The volume of this cylinder is approximately 588.05292 cu ft. The volume is approximate because we approximated π with 3.14.

Got questions? Get instant answers now!

Find the approximate volume of the cone. Round to two decimal places.

A cone with height 5mm and radius 2mm

V c = 1 3 π r 2 h 1 3 3.14 2 mm 2 5 mm 1 3 3.14 4 sq mm 5 mm 1 3 3.14 20 cu mm 20 . 9 3 ¯   cu mm 20 . 93 cu mm

The volume of this cone is approximately 20.93 cu mm. The volume is approximate because we approximated π with 3.14.

Got questions? Get instant answers now!

Practice set b

Find the volume of each geometric object. If π is required, approximate it with 3.14 and find the approximate volume.

Exercises

Find each indicated measurement.

Exact area
A rectangle with a half-circle on top. The rectangle's width is 22ft, which is also the diameter of the circle, and the rectangle's height is 6ft.

60 . 5 π + 132   sq ft size 12{ left ("60" "." 5π+"132" right )"sq ft"} {}

Got questions? Get instant answers now!

Approximate area
A shape composed of a trapezoid with a half-circle on top. The circle's diameter is the width of the top base. The bottom base is 8.4in, the height of the trapezoid portion is 3.0in, and the radius of the circle is 2.6in.

31.0132 sq in.

Got questions? Get instant answers now!

Approximate area
A circle with a radius of 7.1mm.

158.2874 sq mm

Got questions? Get instant answers now!

Approximate area
A trapezoid with a half-circle attached to one base. The half-circle's radius is 3.2in. The other base is 9.4in. The height of the trapezoid is 6.1in.

64.2668 sq in.

Got questions? Get instant answers now!

Approximate area
A tubelike shape in a half circle. The inner circle's radius is 6.0ft. The tube's thickness is 2.0ft.

43.96 sq ft

Got questions? Get instant answers now!

Approximate volume
A sphere with a radius of 1.4cm.

11.49 cu cm

Got questions? Get instant answers now!

Exact volume
Half of a sphere with radius 8ft.

1024 3 π   cu ft size 12{ { {"1024"} over {3} } π " cu ft"} {}

Got questions? Get instant answers now!

Approximate volume
A cone with radius 1.7in and height 7.3in.

22.08 cu in.

Got questions? Get instant answers now!

Exercises for review

( [link] ) In the number 23,426, how many hundreds are there?

4

Got questions? Get instant answers now!

( [link] ) List all the factors of 32.

Got questions? Get instant answers now!

( [link] ) Find the value of 4 3 4 3 5 6 + 1 2 3 size 12{4 { {3} over {4} } - 3 { {5} over {6} } +1 { {2} over {3} } } {} .

31 12 = 2 7 12 = 2 . 58 size 12{ { {"31"} over {"12"} } =2 { {7} over {"12"} } =2 "." "58"} {}

Got questions? Get instant answers now!

( [link] ) Find the value of 5 + 1 3 2 + 2 15 size 12{ { {5+ { {1} over {3} } } over {2+ { {2} over {"15"} } } } } {} .

Got questions? Get instant answers now!

( [link] ) Find the perimeter.
A triangle with sides of the following lengths: 7.2m, 8.3m, and 12.4m.

27.9m

Got questions? Get instant answers now!

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min
Tanis Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Fundamentals of mathematics. OpenStax CNX. Aug 18, 2010 Download for free at http://cnx.org/content/col10615/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of mathematics' conversation and receive update notifications?

Ask