<< Chapter < Page Chapter >> Page >
In this figure a vector C with a negative slope is drawn from the origin. Then from the head of the vector C another vector A with positive slope is drawn and then another vector B with negative slope from the head of the vector A is drawn. From the tail of the vector C a vector R of magnitude of fifty point zero meters and with negative slope of seven degrees is drawn. The head of this vector R meets the head of the vector B. The vector R is known as the resultant vector.

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in every case and is an important characteristic of vectors. Vector addition is commutative    . Vectors can be added in any order.

A + B = B + A . size 12{"A+B=B+A"} {}

(This is true for the addition of ordinary numbers as well—you get the same result whether you add 2 + 3 size 12{"2+3"} {} or 3 + 2 size 12{"3+2"} {} , for example).

Vector subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract B size 12{B} {} from A size 12{A} {} , written A B size 12{ "A" "-B"} {} , we must first define what we mean by subtraction. The negative of a vector B is defined to be –B ; that is, graphically the negative of any vector has the same magnitude but the opposite direction , as shown in [link] . In other words, B size 12{B} {} has the same length as –B size 12{"-" "B"} {} , but points in the opposite direction. Essentially, we just flip the vector so it points in the opposite direction.

Two vectors are shown. One of the vectors is labeled as vector   in north east direction. The other vector is of the same magnitude and is in the opposite direction to that of vector B. This vector is denoted as negative B.
The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So B size 12{B} {} is the negative of –B size 12{ ital "-B"} {} ; it has the same length but opposite direction.

The subtraction of vector B from vector A is then simply defined to be the addition of –B to A . Note that vector subtraction is the addition of a negative vector. The order of subtraction does not affect the results.

A – B = A +  ( –B ) . size 12{ bold "A – B = A + " \( bold "–B" \) } {}

This is analogous to the subtraction of scalars (where, for example, 5 – 2 = 5 +  ( –2 ) size 12{"5 – 2 = 5 + " \( "–2" \) } {} ). Again, the result is independent of the order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the following example illustrates.

Subtracting vectors graphically: a woman sailing a boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction 66.0º size 12{"66" "." 0º} {} north of east from her current location, and then travel 30.0 m in a direction 112º size 12{"112"º} {} north of east (or 22.0º size 12{"22" "." 0º} {} west of north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end up? Compare this location with the location of the dock.

A vector of magnitude twenty seven point five meters is shown. It is inclined to the horizontal at an angle of sixty six degrees. Another vector of magnitude thirty point zero meters is shown. It is inclined to the horizontal at an angle of one hundred and twelve degrees.

Strategy

We can represent the first leg of the trip with a vector A , and the second leg of the trip with a vector B size 12{B} {} . The dock is located at a location A + B . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she will travel a distance B (30.0 m) in the direction 180º 112º = 68º south of east. We represent this as –B , as shown below. The vector –B has the same magnitude as B but is in the opposite direction. Thus, she will end up at a location A + ( –B ) , or A B .

A vector labeled negative B is inclined at an angle of sixty-eight degrees below a horizontal line. A dotted line in the reverse direction inclined at one hundred and twelve degrees above the horizontal line is also shown.

We will perform vector addition to compare the location of the dock, B size 12{ ital "A ""+ "B} {} , with the location at which the woman mistakenly arrives, A +  ( –B ) size 12{ bold "A + " \( bold "–B" \) } {} .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors A size 12{A} {} and –B .

(2) Place the vectors head to tail.

(3) Draw the resultant vector R size 12{R} {} .

(4) Use a ruler and protractor to measure the magnitude and direction of R size 12{R} {} .

Vectors A and negative B are connected in head to tail method. Vector A is inclined with horizontal with positive slope and vector negative B with a negative slope. The resultant of these two vectors is shown as a vector R from tail of A to the head of negative B. The length of the resultant is twenty three point zero meters and has a negative slope of seven point five degrees.

In this case, R = 23 . 0 m size 12{R"=23" "." "0 m"} {} and θ = 7 . size 12{θ=7 "." "5° south of east"} {} south of east.

(5) To determine the location of the dock, we repeat this method to add vectors A size 12{A} {} and B size 12{B} {} . We obtain the resultant vector R ' size 12{R'} {} :

A vector A inclined at sixty six degrees with horizontal is shown. From the head of this vector another vector B is started. Vector B is inclined at one hundred and twelve degrees with the horizontal. Another vector labeled as R prime from the tail of vector A to the head of vector B is drawn. The length of this vector is fifty two point nine meters and its inclination with the horizontal is shown as ninety point one degrees. Vector R prime is equal to the sum of vectors A and B.

In this case R  = 52.9 m size 12{R" = 52" "." "9 m"} {} and θ = 90.1º size 12{θ="90" "." "1° north of east "} {}  north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of subtracting vectors works the same as for addition.

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, 2d kinematics. OpenStax CNX. Sep 04, 2015 Download for free at http://legacy.cnx.org/content/col11879/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the '2d kinematics' conversation and receive update notifications?

Ask