Is there any way to solve
$\text{\hspace{0.17em}}{2}^{x}={3}^{x}?$
Yes. The solution is
$0.$
Equations containing
e
One common type of exponential equations are those with base
$\text{\hspace{0.17em}}e.\text{\hspace{0.17em}}$ This constant occurs again and again in nature, in mathematics, in science, in engineering, and in finance. When we have an equation with a base
$\text{\hspace{0.17em}}e\text{\hspace{0.17em}}$ on either side, we can use the
natural logarithm to solve it.
Given an equation of the form
$\text{\hspace{0.17em}}y=A{e}^{kt}\text{,}$ solve for
$\text{\hspace{0.17em}}t.$
Divide both sides of the equation by
$\text{\hspace{0.17em}}A.$
Apply the natural logarithm of both sides of the equation.
Divide both sides of the equation by
$\text{\hspace{0.17em}}k.$
$t=2\mathrm{ln}\left(\frac{11}{3}\right)\text{\hspace{0.17em}}$ or
$\text{\hspace{0.17em}}\mathrm{ln}{\left(\frac{11}{3}\right)}^{2}$
Does every equation of the form$\text{\hspace{0.17em}}y=A{e}^{kt}\text{\hspace{0.17em}}$have a solution?
No. There is a solution when
$\text{\hspace{0.17em}}k\ne 0,$ and when
$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ and
$\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ are either both 0 or neither 0, and they have the same sign. An example of an equation with this form that has no solution is
$\text{\hspace{0.17em}}2=\mathrm{-3}{e}^{t}.$
Solving an equation that can be simplified to the form
y =
Ae^{
kt }
Sometimes the methods used to solve an equation introduce an
extraneous solution , which is a solution that is correct algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be positive. If the number we are evaluating in a logarithm function is negative, there is no output.
No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous solutions.
Using the definition of a logarithm to solve logarithmic equations
We have already seen that every
logarithmic equation$\text{\hspace{0.17em}}{\mathrm{log}}_{b}\left(x\right)=y\text{\hspace{0.17em}}$ is equivalent to the exponential equation
$\text{\hspace{0.17em}}{b}^{y}=x.\text{\hspace{0.17em}}$ We can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic expression.
For example, consider the equation
$\text{\hspace{0.17em}}{\mathrm{log}}_{2}\left(2\right)+{\mathrm{log}}_{2}\left(3x-5\right)=3.\text{\hspace{0.17em}}$ To solve this equation, we can use rules of logarithms to rewrite the left side in compact form and then apply the definition of logs to solve for
$\text{\hspace{0.17em}}x:$
Questions & Answers
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
In this morden time nanotechnology used in many field .
1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc
2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc
3- Atomobile -MEMS, Coating on car etc.
and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world