# 0.3 Exponential growth  (Page 2/2)

 Page 2 / 2
$R\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}{e}^{rT}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\approx \phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}1\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}rT\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}$

which is somewhat similar to [link] . Another view of the relation can be seen by approximating [link] by

$\frac{x\left(n\phantom{\rule{4pt}{0ex}}+\phantom{\rule{4pt}{0ex}}1\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}-\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}x\left(n\right)}{T}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}r\phantom{\rule{4pt}{0ex}}x\left(n\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}},\phantom{\rule{2.em}{0ex}}$

which gives

$x\left(n+1\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}x\left(n\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}rT\phantom{\rule{4pt}{0ex}}x\left(n\right)\phantom{\rule{2.em}{0ex}}$
$=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\left(1\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}+\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{4pt}{0ex}}rT\phantom{\rule{0.166667em}{0ex}}\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}x\left(n\right)$

having a solution

$x\left(n\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}x\left(0\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}{\left(1\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}+\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{4pt}{0ex}}rT\phantom{\rule{0.166667em}{0ex}}\right)}^{n}$

This implies [link] also, and the method is known as Euler's method for numerically solving a differential equation.

These approximations are used often in modeling. For population models a differential evuation is often used, even though it is obvious thatbirths and deaths occur at random discrete times and populations can take on only integer values. The approximation makes sense only if we uselarge aggregates of individuals. We end up modeling a process that occurs at random discrete points in time by a continuous time mode, which is thenapproximated by a uniformly-spaced discrete time difference equation for solution on a digital computer!

The rapidity of increase of an exponential is usually surprising and it is this fact that makes understanding it important. There are several ways to describe the rate of growth.

$\text{If}\phantom{\rule{10pt}{0ex}}x\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}k\phantom{\rule{4pt}{0ex}}{e}^{rt}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}},$
$\text{then}\phantom{\rule{10pt}{0ex}}\frac{dx}{dt}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}k\phantom{\rule{4pt}{0ex}}r\phantom{\rule{4pt}{0ex}}{e}^{rt}$
$\text{or}\phantom{\rule{10pt}{0ex}}r\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{1}{x}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{dx}{dt}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}.\phantom{\rule{2.em}{0ex}}$

This states that $r$ is the rate of growth per unit of $x\phantom{\rule{0.166667em}{0ex}}$ . For example, the growth rate for the U.S. is about 0.014 per year, or anincrease of 14 people per thousand people each year.

Another measure of the rate is the time for the variable to double in value. This doubling time, ${T}_{d}\phantom{\rule{4pt}{0ex}}$ , is constant and can easily be shown to be given by

${T}_{d}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{1}{r}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}{log}_{e}2\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}0.6931472\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{1}{r}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}$

For example, doubling times for several rates are given by

 $r$ ${T}_{d}$ .01 70 .02 35 .03 23 .04 17 .05 14 .06 12

The present world population is about three billion, and the growth rate is 2.1% per year. This gives

$p\left(t\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}3\phantom{\rule{4pt}{0ex}}{e}^{0.021\phantom{\rule{4pt}{0ex}}t}\phantom{\rule{2.em}{0ex}}$

with $p\left(t\right)$ measured in billions of people and $t$ in years. This gives a doubling time of 33 years. While it is easy to talk of growthrate and doubling times, these have real predictive meaning only if the growth is exponential.

## Two points of view

There are two rather different approaches that can be used when describing some physical phenomenon by exponential growth. It can be viewed as anempirical description of how some variables tend to evolve in time. This is a data-fitting view that is pragmatic and flexible, but does not givemuch insight or direction on how to conduct experiments or what other things might be implied.

The second approach primarily considers the underlying differential equation as a "law" of growth that results in exponential behavior. Thislaw has various assumptions and implications that can be examined for reasonableness or verified by independent experiment. While perhaps notso important for the first-order linear equation here, this approach becomes necessary for the more complicated models later.

These approaches must often be mixed. The data will imply a model or equation which will give direction as to what data should be taken, whichwill in turn imply modifications, etc. The process where structure is chosen and the parameters are chosen so that the model solution agreeswith observed data is a form of parameter identification. That was how [link] was determined.

## The use of semi-log plots

When examining data that has been plotted in fashion, it is often hard to say much about its basic nature. For example if a time series is plotted on linear coordinates as follows

it would not be obvious if it were samples of an exponential, a parabola, or some other function. Straight lines, on the other hand, are easy to identify and so we will seek a method of displaying data that will use straight lines.

If $x\left(t\right)$ is an exponential, then

$x\left(t\right)\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}k\phantom{\rule{4pt}{0ex}}{e}^{rt}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}$

Taking logarithms of base $e$ for both sides of [link] gives

$log\phantom{\rule{4pt}{0ex}}x\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}log\phantom{\rule{4pt}{0ex}}k\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}rt\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}$

If, rather than plotting $x$ versus $t\phantom{\rule{0.166667em}{0ex}}$ , we plot the log of $x$ versus $t\phantom{\rule{0.166667em}{0ex}}$ , then we have a straight line with a slope of $r$ and an intercept of log $k\phantom{\rule{4pt}{0ex}}$ . It would look like

Actually using the logarithm of a variable is awkward so the variable itself can be plotted on logarithmic coordinates to give the same result. Graph paper with logarithmic spacing along one coordinate and uniform spacing along the other is called semi-log paper.

Consider the plot of the U.S. population displayed on semi-log paper in Figure 3. Note that there were two distinct periods of exponentialgrowth, one from 1600 to 1650, and another from 1650 to 1870. To calculate the growth rate over the 1650 – 1870 period, we can calculatethe slope.

$r=\frac{\text{log}\phantom{\rule{5pt}{0ex}}p\left({t}_{1}\right)-\text{log}\phantom{\rule{5pt}{0ex}}p\left({t}_{2}\right)}{{t}_{1}-{t}_{2}}$
$=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{log\phantom{\rule{4pt}{0ex}}{10}^{7}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}-\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}log\phantom{\rule{4pt}{0ex}}{10}^{5}}{1823\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}-\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}1670}$
$=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\frac{16.118\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}-\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}11.513}{153}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}0.03$

During that period, there was a 3% per year growth rate or, in other terms, a 23-year doubling time.

An alternative is to measure the doubling time and calculate $r$ from [link] . Still another approach is to measure the time necessary for the populationto increase by $e=2.72$ ... The growth rate is the reciprocal of that time interval. Derive and check these for yourself.

The data displayed in Figures 1, 2 and 3 illustrates exponential growth and the use of semi-log paper.The books [link] [link] give interesting discussions of growth.

## Analytical versus numerical solutions

In some cases, there is a choice between an analytical solution in the form of an equation and a numerical solution in the form of a sequence ofnumbers. A real advantage of an analytical form is the ability to easily see the effects of various parameters. For example, the exponentialsolution of [link] given in [link] directly shows the relation of the growth rate $r$ in equation [link] to the exponent in solution [link] . If the equation were numerically solved, say on a digital computer or calculatorusing Euler's method given in [link] , it would take numerous experimental runs to establish the same relations.

On the other hand, for complicated equations there are no known analytical expressions for the solutions, and numerical solutions are the onlyalternatives. It is still worth studying the analytical solution of simple equations to gain insight into the nature of the numerical solutions of complex equations.

## Assumptions

The linear first-order differential equation model that is implied by exponential growth has many assumptions that are worth noting here.First, the growth rate is constant, independent of crowding, food, availability, etc. It also assumes that age distribution within thepopulation is constant, and that an average birth and death rate makes sense. There are many factors one will want to include effects ofcrowding and resource availability, time delays in reproduction, different birth and death rates for different age groups, and many more. In thenext section we will add one complication the effects of a limit to growth.

Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!