# 0.7 Generalizations of the basic multiresolution wavelet system  (Page 9/28)

 Page 9 / 28

## Two channel biorthogonal filter banks

In previous chapters for orthogonal wavelets, the analysis filters and synthesis filters are time reversal of each other; i.e., $\stackrel{˜}{h}\left(n\right)=h\left(-n\right)$ , $\stackrel{˜}{g}\left(n\right)=g\left(-n\right)$ . Here, for the biorthogonal case, we relax these restrictions. However, in order to perfectlyreconstruct the input, these four filters still have to satisfy a set of relations.

Let ${c}_{1}\left(n\right),n\in \mathbf{Z}$ be the input to the filter banks in [link] , then the outputs of the analysis filter banks are

${c}_{0}\left(k\right)=\sum _{n}\stackrel{˜}{h}\left(2k-n\right){c}_{1}\left(n\right),\phantom{\rule{2.em}{0ex}}{d}_{0}\left(k\right)=\sum _{n}\stackrel{˜}{g}\left(2k-n\right){c}_{1}\left(n\right).$

The output of the synthesis filter bank is

${\stackrel{˜}{c}}_{1}\left(m\right)=\sum _{k}\left[h,\left(2k-m\right),{c}_{0},\left(k\right),+,g,\left(2k-m\right),{d}_{0},\left(k\right)\right].$

${\stackrel{˜}{c}}_{1}\left(m\right)=\sum _{n}\sum _{k}\left[h,\left(2k-m\right),\stackrel{˜}{h},\left(2k-n\right),+,g,\left(2k-m\right),\stackrel{˜}{g},\left(2k-n\right)\right]{c}_{1}\left(n\right).$

For perfect reconstruction, i.e., ${\stackrel{˜}{c}}_{1}\left(m\right)={c}_{1}\left(m\right),\forall m\in \mathbf{Z}$ , we need

$\sum _{k}\left[h,\left(2k-m\right),\stackrel{˜}{h},\left(2k-n\right),+,g,\left(2k-m\right),\stackrel{˜}{g},\left(2k-n\right)\right]=\delta \left(m-n\right).$

Fortunately, this condition can be greatly simplified. In order for it to hold, the four filters have to be related as [link]

$\stackrel{˜}{g}\left(n\right)={\left(-1\right)}^{n}h\left(1-n\right),\phantom{\rule{2.em}{0ex}}g\left(n\right)={\left(-1\right)}^{n}\stackrel{˜}{h}\left(1-n\right),$

up to some constant factors. Thus they are cross-related by time reversal and flipping signs of every other element. Clearly, when $\stackrel{˜}{h}=h$ , we get the familiar relations between the scaling coefficients and the wavelet coefficients for orthogonal wavelets, $g\left(n\right)={\left(-1\right)}^{n}h\left(1-n\right)$ . Substituting [link] back to [link] , we get

$\sum _{n}\stackrel{˜}{h}\left(n\right)h\left(n+2k\right)=\delta \left(k\right).$

In the orthogonal case, we have ${\sum }_{n}h\left(n\right)h\left(n+2k\right)=\delta \left(k\right)$ ; i.e., $h\left(n\right)$ is orthogonal to even translations of itself. Here $\stackrel{˜}{h}$ is orthogonal to $h$ , thus the name biorthogonal .

Equation  [link] is the key to the understanding of the biorthogonal filter banks. Let's assume $\stackrel{˜}{h}\left(n\right)$ is nonzero when ${\stackrel{˜}{N}}_{1}\le n\le {\stackrel{˜}{N}}_{2}$ , and $h\left(n\right)$ is nonzero when ${N}_{1}\le n\le {N}_{2}$ . Equation  [link] implies that [link]

${N}_{2}-{\stackrel{˜}{N}}_{1}=2k+1,\phantom{\rule{1.em}{0ex}}{\stackrel{˜}{N}}_{2}-{N}_{1}=2\stackrel{˜}{k}+1,\phantom{\rule{2.em}{0ex}}k,\stackrel{˜}{k}\in \mathbf{Z}.$

In the orthogonal case, this reduces to the well-known fact that the length of $h$ has to be even.  [link] also imply that the difference between the lengths of $\stackrel{˜}{h}$ and $h$ must be even. Thus their lengths must be both even or both odd.

## Biorthogonal wavelets

We now look at the scaling function and wavelet to see how removing orthogonality and introducing a dual basis changes their characteristics.We start again with the basic multiresolution definition of the scaling function and add to that a similar definition of a dual scaling function.

$\Phi \left(t\right)=\sum _{n}h\left(n\right)\sqrt{2}\Phi \left(2t-n\right),$
$\stackrel{˜}{\Phi }\left(t\right)=\sum _{n}\stackrel{˜}{h}\left(n\right)\sqrt{2}\stackrel{˜}{\Phi }\left(2t-n\right).$

From Theorem  [link] in  Chapter: The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients , we know that for $\phi$ and $\stackrel{˜}{\phi }$ to exist,

$\sum _{n}h\left(n\right)\phantom{\rule{0.277778em}{0ex}}=\phantom{\rule{0.277778em}{0ex}}\sum _{n}\stackrel{˜}{h}\left(n\right)\phantom{\rule{0.277778em}{0ex}}=\phantom{\rule{0.277778em}{0ex}}\sqrt{2}.$

Continuing to parallel the construction of the orthogonal wavelets, we also define the wavelet and the dual wavelet as

$\psi \left(t\right)=\sum _{n}g\left(n\right)\sqrt{2}\Phi \left(2t-n\right)=\sum _{n}{\left(-1\right)}^{n}\stackrel{˜}{h}\left(1-n\right)\sqrt{2}\Phi \left(2t-n\right),$
$\stackrel{˜}{\psi }\left(t\right)=\sum _{n}\stackrel{˜}{g}\left(n\right)\sqrt{2}\stackrel{˜}{\Phi }\left(2t-n\right)=\sum _{n}{\left(-1\right)}^{n}h\left(1-n\right)\sqrt{2}\stackrel{˜}{\Phi }\left(2t-n\right).$

Now that we have the scaling and wavelet functions and their duals, the question becomes whether we can expand and reconstruct arbitrary functionsusing them. The following theorem [link] answers this important question.

Theorem 37 For $\stackrel{˜}{h}$ and $h$ satisfying [link] , suppose that for some C, $ϵ>0$ ,

$|\text{Φ}\left(\text{ω}\right)|\le C{\left(1+\text{ω}\right)}^{-1/2-ϵ},\phantom{\rule{2.em}{0ex}}|\stackrel{˜}{\text{Φ}}\left(\text{ω}\right)|\le C{\left(1+\text{ω}\right)}^{-1/2-ϵ}.$

If $\Phi$ and $\stackrel{˜}{\Phi }$ defined above have sufficient decay in the frequency domain, then ${\psi }_{j,k}\stackrel{\mathrm{def}}{=}{2}^{j/2}\psi \left({2}^{j}x-k\right),\phantom{\rule{0.277778em}{0ex}}j,k\in \mathbf{Z}$ constitute a frame in ${L}^{2}\left(\mathbf{R}\right)$ . Their dual frame is given by ${\stackrel{˜}{\psi }}_{j,k}\stackrel{\mathrm{def}}{=}{2}^{j/2}\stackrel{˜}{\psi }\left({2}^{j}x-k\right),\phantom{\rule{0.277778em}{0ex}}j,k\in \mathbf{Z}$ ; for any $f\in {L}^{2}\left(\mathbf{R}\right)$ ,

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!