<< Chapter < Page Chapter >> Page >
E n = 1 2 m e v 2 k Zq e 2 r n . size 12{E rSub { size 8{n} } = { {1} over {2} } m rSub { size 8{e} } v rSup { size 8{2} } - k { { ital "Zq" rSub { size 8{e} } rSup { size 8{2} } } over {r rSub { size 8{n} } } } } {}

Now we substitute r n size 12{r rSub { size 8{n} } } {} and v size 12{v} {} from earlier equations into the above expression for energy. Algebraic manipulation yields

E n = Z 2 n 2 E 0 ( n = 1, 2, 3, ... ) size 12{E rSub { size 8{n} } = - { {Z rSup { size 8{2} } } over {n rSup { size 8{2} } } } E rSub { size 8{0} } \( n=1," 2, 3, " "." "." "." \) } {}

for the orbital energies of hydrogen-like atoms    . Here, E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy n = 1 size 12{ left (n=1 right )} {} for hydrogen Z = 1 size 12{ left (Z=1 right )} {} and is given by

E 0 = 2 π 2 q e 4 m e k 2 h 2 = 13.6 eV.

Thus, for hydrogen,

E n = 13.6 eV n 2 ( n = 1, 2, 3, ...).

[link] shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are related to transitions between energy levels.

An energy level diagram is shown. At the left, there is a vertical arrow showing the energy levels increasing from bottom to top. At the bottom, there is a horizontal line showing the energy levels of Lyman series, n is one. The energy is marked as negative thirteen point six electron volt. Then, in the upper half of the figure, another horizontal line showing Balmer series is shown when the value of n is two. The energy level is labeled as negative three point four zero electron volt. Above it there is another horizontal line showing Paschen series. The energy level is marked as negative one point five one electron volt. Above this line, some more lines are shown in a small area to show energy levels of other values of n.
Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough kinetic energy to escape. As n size 12{n} {} approaches infinity, the total energy becomes zero. This corresponds to a free electron with no kinetic energy, since r n size 12{r rSub { size 8{n} } } {} gets very large for large n size 12{n} {} , and the electric potential energy thus becomes zero. Thus, 13.6 eV is needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the electron becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Δ E = hf = E i E f . size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}

Substituting E n = ( 13.6 eV / n 2 ) size 12{E rSub { size 8{n} } = - "13" "." 6``"eV"/n rSup { size 8{2} } } {} , we see that

hf = 13.6 eV 1 n f 2 1 n i 2 . size 12{ ital "hf"= left ("13" "." 6" eV" right ) left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

Dividing both sides of this equation by hc size 12{ ital "hc"} {} gives an expression for 1 / λ size 12{1/λ} {} :

hf hc = f c = 1 λ = 13.6 eV hc 1 n f 2 1 n i 2 . size 12{ { { ital "hf"} over { ital "hc"} } = { {f} over {c} } = { {1} over {λ} } = { { left ("13" "." 6" eV" right )} over { ital "hc"} } left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

It can be shown that

13.6 eV hc = 13.6 eV 1.602 × 10 −19 J/eV 6.626 × 10 −34 J·s 2.998 × 10 8 m/s = 1.097 × 10 7 m –1 = R

is the Rydberg constant    . Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier as a recipe to fit experimental data.

1 λ = R 1 n f 2 1 n i 2 size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the hydrogen spectrum. It is because the energy levels are proportional to 1 / n 2 size 12{1/n rSup { size 8{2} } } {} , where n size 12{n} {} is a non-negative integer. A downward transition releases energy, and so n i size 12{n rSub { size 8{i} } } {} must be greater than n f size 12{n rSub { size 8{f} } } {} . The various series are those where the transitions end on a certain level. For the Lyman series, n f = 1 size 12{n rSub { size 8{f} } =1} {} — that is, all the transitions end in the ground state (see also [link] ). For the Balmer series, n f = 2 size 12{n rSub { size 8{f} } =2} {} , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in physics, and something new is emerging—angular momentum is quantized.

Triumphs and limits of the bohr theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all atoms and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically (accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the nucleus—matter would collapse). These are major triumphs.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask