<< Chapter < Page Chapter >> Page >

The design objective of the equalizer is to undo the effects of the channel and to remove theinterference. Conceptually, the equalizer attempts to build a system that isa “delayed inverse” of [link] , removing the intersymbol interference while simultaneouslyrejecting additive interferers uncorrelated with the source. If the interference η ( k T s ) is unstructured (for instance white noise) then there is little that alinear equalizer can do to remove it. But when the interference is highly structured (such as narrowband interference from anotheruser), then the linear filter can often notch out the offending frequencies.

As shown in Example  [link] of [link] , the solution for the optimal sampling times found bythe clock recovery algorithms depend on the ISI in the channel. Consequently, the digital model (such as [link] ) formed by sampling an analog transmission path (such as [link] ) depends on when the samples are taken within each period T s . To see how this can happen in a simple case, consider a two-path transmissionchannel

δ ( t ) + 0 . 6 δ ( t - Δ ) ,

where Δ is some fraction of T s . For each transmitted symbol, the received signal will containtwo copies of the pulse shape p ( t ) , the first undelayed and the second delayed by Δ and attenuated by a factor of 0 . 6 . Thus, the receiver sees

c ( t ) = p ( t ) + 0 . 6 p ( t - Δ ) .

This is shown in [link] for Δ = 0 . 7 T s . The clock recovery algorithms cannot separate the individualcopies of the pulse shapes. Rather, they react to the complete received shape, which is their sum. The power maximizationwill locate the sampling times at the peak of this curve, and the lattice of sampling times will be different fromwhat would be expected without ISI. The effective (digital) channel model is thus a sampled versionof c ( t ) . This is depicted in [link] by the small circles that occur at T s spaced intervals.

The optimum sampling times (as found by the energy maximization algorithm) differ when there is ISI in the transmission path, and change the effective digital model of the channel.
The optimum sampling times (as found by the energy maximization algorithm) differ when there is ISIin the transmission path, and change the effective digital model of the channel.

In general, an accurate digital model for a channel depends on many things: the underlying analog channel,the pulse shaping used, and the timing of the sampling process.At first glance, this seems like it might make designing an equalizer for such achannel almost impossible. But there is good news. No matter what timing instants are chosen, no matterwhat pulse shape is used, and no matter what the underlying analog channel may be(as long as it is linear), there is a FIR linearrepresentation of the form [link] that closely models its behavior. The details may change, but it is always a sampling of the smooth curve (like c ( t ) in [link] ) that defines the digital model of the channel.As long as the digital model of this channel does not have deep nulls(i.e., a frequency response that practically zeroes out some important band of frequencies), there is a good chance that theequalizer can undo the effects of the channel.

Trained least-squares linear equalization

When there is a training sequence available (for instance, in the known frame information that is used insynchronization), this can also be used to help build or “train” an equalizer.The basic strategy is to find a suitable function of the unknown equalizer parameters that can be used to definean optimization problem. Then, applying the techniques of Chapters [link] , [link] , and [link] , the optimization problem can be solved in a variety of ways.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software receiver design. OpenStax CNX. Aug 13, 2013 Download for free at http://cnx.org/content/col11510/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software receiver design' conversation and receive update notifications?

Ask