<< Chapter < Page Chapter >> Page >

Large-amplitude wavelet coefficients can detect and measure short high-frequency variations because they have a narrow timelocalization at high frequencies. At low frequencies their time resolution is lower, but they have a better frequency resolution.This modification of time and frequency resolution is adapted to represent sounds with sharp attacks, or radar signals having afrequency that may vary quickly at high frequencies.

Multiscale zooming

A wavelet dictionary is also adapted to analyze the scaling evolution of transientswith zooming procedures across scales. Suppose now that ψ is real. Since it has a zero average, a wavelet coefficient W f ( u , s ) measures the variation of f in a neighborhood of u that has a size proportional to s . Sharp signal transitionscreate large-amplitude wavelet coefficients.

Heisenberg time-frequency boxes of two wavelets, ψ u , s and ψ u 0 , s 0 . When thescale s decreases, the time support is reduced but the frequency spread increases and covers an intervalthat is shifted toward high frequencies.

Signal singularities have specific scaling invariance characterized by Lipschitz exponents. Chapter 6 relates the pointwiseregularity of f to the asymptotic decay of the wavelet transform amplitude | W f ( u , s ) | when s goes to zero. Singularities are detected by followingthe local maxima of the wavelet transform acrossscales.

In images, wavelet local maxima indicate the position of edges, which aresharp variations of image intensity. It defines scale–space approximation support of f from which precise image approximations are reconstructed.At different scales, the geometry of this local maxima support provides contoursof image structures of varying sizes. This multiscale edge detection is particularly effective forpattern recognition in computer vision (Canny:86).

The zooming capability of the wavelet transform not only locates isolated singular events, but canalso characterize more complex multifractal signalshaving nonisolated singularities. Mandelbrot (Mandelbrot:82) was the first to recognizethe existence of multifractals in most corners of nature. Scaling one part of a multifractalproduces a signal that is statistically similar to the whole. This self-similarityappears in the continuous wavelet transform, which modifies the analyzing scale.From global measurements of the wavelet transform decay, Chapter 6 measuresthe singularity distribution of multifractals. This is particularly important in analyzing theirproperties and testing multifractal models in physics or in financial time series.

Time-frequency orthonormal bases

Orthonormal bases of time-frequency atoms remove all redundancy and define stablerepresentations. A wavelet orthonormal basis is an example of the time-frequency basis obtained by scaling a wavelet ψ with dyadic scales s = 2 j and translating it by 2 j n , which is written ψ j , n . In the time-frequency plane, the Heisenberg resolution box of ψ j , n is a dilation by 2 j and translation by 2 j n of the Heisenberg box of ψ . A wavelet orthonormal is thus a subdictionary of thecontinuous wavelet transform dictionary, which yields a perfecttiling of the time-frequency plane illustrated in [link] .

The time-frequency boxes of a wavelet basis define a tiling of the time-frequency plane.

One can construct many other orthonormal bases of time-frequency atoms, corresponding to different tilings of the time-frequency plane.Wavelet packet and local cosine bases are two important examples constructed in Chapter 8, withtime-frequency atoms that split the frequency and the time axis, respectively, in intervals of varying sizes.

Wavelet packet bases

Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth. Coifman, Meyer, and Wickerhauser (CoifmanMW:92) havegeneralized this construction with bases that split the frequency axis in intervals of bandwidth that may be adjusted.Each frequency interval is covered by the Heisenberg time-frequency boxesof wavelet packet functions translated in time, in order to cover the whole plane, as shown by [link] .

As for wavelets, wavelet-packet coefficients are obtained with a filter bank of conjugate mirror filters that split the frequency axisin several frequency intervals. Different frequency segmentations correspond to different waveletpacket bases. For images, a filter bank divides the image frequency support in squares of dyadic sizes thatcan be adjusted.

A wavelet packet basis divides the frequency axis in separate intervals of varying sizes. A tiling is obtainedby translating in time the wavelet packets covering each frequency interval.

Local cosine bases

Local cosine orthonormal bases are constructed by dividing the timeaxis instead of the frequency axis. The time axis is segmented in successive intervals [ a p , a p + 1 ] . The local cosine bases of Malvar (Malvar:88) are obtainedby designing smooth windows g p ( t ) that cover each interval [ a p , a p + 1 ] , and by multiplying them by cosine functions cos ( ξ t + φ ) of different frequencies. This is yet another idea that has beenindependently studied in physics, signal processing, and mathematics.Malvar's original construction was for discrete signals. At the same time, the physicist Wilson (Wilson:87)was designing a local cosine basis, with smooth windows of infinite support, to analyze theproperties of quantum coherent states. Malvar bases were also rediscovered and generalizedby the harmonic analysts Coifman and Meyer (CoifmanM:91). These different views of the same bases brought tolight mathematical and algorithmic properties that opened new applications.

A multiplication by cos ( ξ t + φ ) translates the Fourier transform g ^ p ( ω ) of g p ( t ) by ± ξ . Over positive frequencies,the time-frequency box of the modulated window g p ( t ) cos ( ξ t + φ ) is therefore equal to the time-frequency box of g p translated by ξ along frequencies. [link] shows the time-frequency tiling corresponding to such alocal cosine basis. For images, a two-dimensional cosine basis is constructed by dividing theimage support in squares of varying sizes.

Questions & Answers

the diagram of the digestive system
Assiatu Reply
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is cell divisoin?
Aron Reply
Diversity of living thing
ISCONT
what is cell division
Aron Reply
Cell division is the process by which a single cell divides into two or more daughter cells. It is a fundamental process in all living organisms and is essential for growth, development, and reproduction. Cell division can occur through either mitosis or meiosis.
AI-Robot
What is life?
Allison Reply
life is defined as any system capable of performing functions such as eating, metabolizing,excreting,breathing,moving,Growing,reproducing,and responding to external stimuli.
Mohamed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, A wavelet tour of signal processing, the sparse way. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10711/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'A wavelet tour of signal processing, the sparse way' conversation and receive update notifications?

Ask