<< Chapter < Page Chapter >> Page >

The free rider problem of public goods

Private companies find it difficult to produce public goods. If a good or service is nonexcludable, like national defense, so that it is impossible or very costly to exclude people from using this good or service, then how can a firm charge people for it?

Visit this website to read about a connection between free riders and “bad music.”

When individuals make decisions about buying a public good, a free rider    problem can arise, in which people have an incentive to let others pay for the public good and then to “free ride” on the purchases of others. The free rider problem can be expressed in terms of the prisoner’s dilemma game, which is discussed as a representation of oligopoly in Monopolistic Competition and Oligopoly . Say that two people are thinking about contributing to a public good: Rachel and Samuel. When either of them contributes to a public good, such as a local fire department, their personal cost of doing so is $4 and the social benefit of that person’s contribution is $6. Because society’s benefit of $6 is greater than the cost of $4, the investment is a good idea for society as a whole. The problem is that, while Rachel and Samuel pay for the entire cost of their contribution to the public good, they receive only half of the benefit, because the benefit of the public good is divided equally among the members of society. This sets up the prisoner’s dilemma illustrated in [link] .

Contributing to a public good as a prisoner’s dilemma
Samuel (S) Contribute Samuel (S) Do Not Contribute
Rachel (R) Contribute R pays $4, receives $6, net gain +$2
S pays $4, receives $6, net gain +$2
R pays $4, receives $3, net gain –$1
S pays $0, receives $3, net gain +$3
Rachel (R) Do Not Contribute R pays $0, receives $3, net gain +$3
S pays $4, receives $3, net gain –$1
R pays $0, receives $0
S pays $0, receives $0

If neither Rachel nor Samuel contributes to the public good, then there are no costs and no benefits of the public good. Suppose, however, that only Rachel contributes, while Samuel does not. Rachel incurs a cost of $4, but receives only $3 of benefit (half of the total $6 of benefit to society), while Samuel incurs no cost, and yet he also receives $3 of benefit. In this outcome, Rachel actually loses $1 while Samuel gains $3. A similar outcome, albeit with roles reversed, would occur if Samuel had contributed, but Rachel had not. Finally, if both parties contribute, then each incurs a cost of $4 and each receives $6 of benefit (half of the total $12 benefit to society). There is a dilemma with the Prisoner’s Dilemma, though. See the Work it Out feature.

The problem with the prisoner’s dilemma

The difficulty with the prisoner’s dilemma arises as each person thinks through his or her strategic choices.

Step 1. Rachel reasons in this way: If Samuel does not contribute, then I would be a fool to contribute. However, if Samuel does contribute, then I can come out ahead by not contributing.

Step 2. Either way, I should choose not to contribute, and instead hope that I can be a free rider who uses the public good paid for by Samuel.

Step 3. Samuel reasons the same way about Rachel.

Step 4. When both people reason in that way, the public good never gets built, and there is no movement to the option where everyone cooperates—which is actually best for all parties.

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of microeconomics for ap® courses. OpenStax CNX. Aug 24, 2015 Download for free at http://legacy.cnx.org/content/col11858/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of microeconomics for ap® courses' conversation and receive update notifications?

Ask