# 12.1 A mathematical look at distance

 Page 1 / 1
This module covers mathematical distance in preparation for later modules on conic sections.

The key mathematical formula for discussing all the shapes above is the distance between two points.

Many students are taught, at some point, the “distance formula” as a magic (and very strange-looking) rule. In fact, the distance formula comes directly from a bit of intuition...and the Pythagorean Theorem.

The intuition comes in finding the distance between two points that have one coordinate in common.

## The distance between two points that have one coordinate in common

The drawing shows the points (2,3) and (6,3). Finding the distance between these points is easy: just count! Take your pen and move it along the paper, starting at (2,3) and moving to the right. Let’s see…one unit gets you over to (3,3); the next unit gets you to (4,3)...a couple more units to (6,3). The distance from (2,3) to (6,3) is 4.

Of course, it would be tedious to count our way from (2,3) to (100,3). But we don’t have to—in fact, you may have already guessed the faster way—we subtract the x coordinates.

• The distance from (2,3) to (6,3) is $6-2=4$
• The distance from (2,3) to (100,3) is $100-2=98$

And so on. We can write this generalization in words:

Whenever two points lie on a horizontal line, you can find the distance between them by subtracting their $x$ -coordinates.

This may seem pretty obvious in the examples given above. It’s a little less obvious, but still true, if one of the $x$ coordinates is negative.

The drawing above shows the numbers (-3,1) and (2,1). You can see that the distance between them is 5 (again, by counting). Does our generalization still work? Yes it does, because subtracting a negative number is the same as adding a positive one.

The distance from (-3,1) to (2,1) is $2-\left(-3\right)=5$

How can we express this generalization mathematically? If two points lie on a horizontal line, they have two different x-coordinates: call them ${x}_{1}$ and ${x}_{2}$ . But they have the same y-coordinate, so just call that y. So we can rewrite our generalization like this: “the distance between the points ( ${x}_{1}$ , $y$ ) and ( ${x}_{2}$ , $y$ ) is ${x}_{2}–{x}_{1}$ .” In our most recent example, ${x}_{1}=–3$ , ${x}_{2}=2$ , and $y=1$ . So the generalization says “the distance between the points (-3,1) and (2,1) is $2-\left(-3\right)$ ”, or 5.

But there’s one problem left: what if we had chosen ${x}_{2}$ and ${x}_{1}$ the other way? Then the generalization would say “the distance between the points (2,1) and (-3,1) is $\left(–3\right)-2$ ”, or -5. That isn’t quite right: distances can never be negative. We get around this problem by taking the absolute value of the answer. This guarantees that, no matter what order the points are listed in, the distance will come out positive. So now we are ready for the correct mathematical generalization:

## Distance between two points on a horizontal line

The distance between the points ( ${x}_{1}$ , $y$ ) and ( ${x}_{2}$ , $y$ ) is $|{x}_{2}–{x}_{1}|$

You may want to check this generalization with a few specific examples—try both negative and positive values of ${x}_{1}$ and ${x}_{2}$ . Then, to really test your understanding, write and test a similar generalization for two points that lie on a vertical line together. Both of these results will be needed for the more general case below.

## The distance between two points that have no coordinate in common

So, what if two points have both coordinates different? As an example, consider the distance from (–2,5) to (1,3).

The drawing shows these two points. The (diagonal) line between them has been labeled $d$ : it is this line that we want the length of, since this line represents the distance between our two points.

The drawing also introduces a third point into the picture, the point (–2,3). The three points define the vertices of a right triangle. Based on our earlier discussion, you can see that the vertical line in this triangle is length $|5–3|=2$ . The horizontal line is length $|1–\left(–2\right)|=3$ .

But it is the diagonal line that we want. And we can find that by using the Pythagorean Theorem, which tells us that ${d}^{2}={2}^{2}+{3}^{2}$ . So $d=\sqrt{13}$

If you repeat this process with the generic points ( ${x}_{1}$ , ${y}_{1}$ ) and ( ${x}_{2}$ , ${y}_{2}$ ) you arrive at the distance formula:

## Distance between any two points

If $d$ is the distance between the points ( ${x}_{1}$ , ${y}_{1}$ ) and ( ${x}_{2}$ , ${y}_{1}$ ), then ${d}^{2}=\left({x}_{2}-{x}_{1}{\right)}^{2}+\left({y}_{2}-{y}_{1}{\right)}^{2}$

${x}_{2}–{x}_{1}$ is the horizontal distance, based on our earlier calculation. ${y}_{2}–{y}_{1}$ is the vertical distance, and the entire formula is simply the Pythagorean Theorem restated in terms of coordinates.

And what about those absolute values we had to put in before? They were used to avoid negative distances. Since the distances in the above formulae are being squared , we no longer need the absolute values to insure that all answers will come out positive.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!