<< Chapter < Page Chapter >> Page >

Sine and cosine identities

There are a few identities relating to the trigonometric functions that make working with triangles easier. These are:

  1. the sine rule
  2. the cosine rule
  3. the area rule

and will be described and applied in this section.

The sine rule

The Sine Rule

The sine rule applies to any triangle: sin A ^ a = sin B ^ b = sin C ^ c where a is the side opposite A ^ , b is the side opposite B ^ and c is the side opposite C ^ .

Consider A B C .

The area of A B C can be written as: area ABC = 1 2 c · h . However, h can be calculated in terms of A ^ or B ^ as:

sin A ^ = h b h = b · sin A ^


sin B ^ = h a h = a · sin B ^

Therefore the area of A B C is: 1 2 c · h = 1 2 c · b · sin A ^ = 1 2 c · a · sin B ^

Similarly, by drawing the perpendicular between point B and line A C we can show that: 1 2 c · b · sin A ^ = 1 2 a · b · sin C ^

Therefore the area of A B C is: 1 2 c · b · sin A ^ = 1 2 c · a · sin B ^ = 1 2 a · b · sin C ^

If we divide through by 1 2 a · b · c , we get: sin A ^ a = sin B ^ b = sin C ^ c

This is known as the sine rule and applies to any triangle, right angled or not.

There is a coastline with two lighthouses, one on either side of a beach. The two lighthouses are 0 , 67  km apart and one is exactly due east of the other. The lighthouses tell how close a boat is by taking bearings to the boat (remember – a bearing is an angle measured clockwise from north). These bearings are shown. Use the sine rule to calculate how far the boat is from each lighthouse.

  1. We can see that the two lighthouses and the boat form a triangle. Since we know the distance between the lighthouses and we have two angles we can use trigonometry to find the remaining two sides of the triangle, the distance of the boat from the two lighthouses.

  2. We need to know the lengths of the two sides AC and BC . We can use the sine rule to find our missing lengths.

    B C sin A ^ = A B sin C ^ B C = A B · sin A ^ sin C ^ = ( 0 , 67 km ) sin ( 37 ) sin ( 128 ) = 0 , 51 km
    A C sin B ^ = A B sin C ^ A C = A B · sin B ^ sin C ^ = ( 0 , 67 km ) sin ( 15 ) sin ( 128 ) = 0 , 22 km

Sine rule

  1. Show that sin A ^ a = sin B ^ b = sin C ^ c is equivalent to: a sin A ^ = b sin B ^ = c sin C ^ Note: either of these two forms can be used.
  2. Find all the unknown sides and angles of the following triangles:
    1. PQR in which Q ^ = 64 ; R ^ = 24 and r = 3
    2. KLM in which K ^ = 43 ; M ^ = 50 and m = 1
    3. ABC in which A ^ = 32 , 7 ; C ^ = 70 , 5 and a = 52 , 3
    4. XYZ in which X ^ = 56 ; Z ^ = 40 and x = 50
  3. In ABC, A ^ = 116 ; C ^ = 32 and AC = 23  m. Find the length of the side AB.
  4. In RST, R ^ = 19 ; S ^ = 30 and RT = 120  km. Find the length of the side ST.
  5. In KMS, K ^ = 20 ; M ^ = 100 and s = 23  cm. Find the length of the side m.

The cosine rule

The Cosine Rule

The cosine rule applies to any triangle and states that:

a 2 = b 2 + c 2 - 2 b c cos A ^ b 2 = c 2 + a 2 - 2 c a cos B ^ c 2 = a 2 + b 2 - 2 a b cos C ^

where a is the side opposite A ^ , b is the side opposite B ^ and c is the side opposite C ^ .

The cosine rule relates the length of a side of a triangle to the angle opposite it and the lengths of the other two sides.

Consider A B C which we will use to show that: a 2 = b 2 + c 2 - 2 b c cos A ^ .

In D C B : a 2 = ( c - d ) 2 + h 2 from the theorem of Pythagoras.

In A C D : b 2 = d 2 + h 2 from the theorem of Pythagoras.

We can eliminate h 2 from [link] and [link] to get:

b 2 - d 2 = a 2 - ( c - d ) 2 a 2 = b 2 + ( c 2 - 2 c d + d 2 ) - d 2 = b 2 + c 2 - 2 c d + d 2 - d 2 = b 2 + c 2 - 2 c d

In order to eliminate d we look at A C D , where we have: cos A ^ = d b . So, d = b cos A ^ . Substituting this into [link] , we get: a 2 = b 2 + c 2 - 2 b c cos A ^

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
I'm not good at math so would you help me
what is the problem that i will help you to self with?
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Other chapter Q/A we can ask
Moahammedashifali Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: grade 11 maths. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11243/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 maths' conversation and receive update notifications?