# 0.9 Cyclotron  (Page 5/5)

 Page 5 / 5

$N=\frac{{q}^{2}{B}^{2}{R}^{2}}{4mqV}$

and

${K}_{\text{max}}=2qNV$

Clearly, the numbers of revolutions is inversely proportional to the potential difference applied in the gap. On the other hand, maximum energy of the particle is directly proportional to the product “NV”. Combining two facts, we find that energy of the particle is indeed independent of the applied voltage in the gap.

## Limitations of cyclotron

We have already noted two limitations of cyclotron as accelerator. One limitation is that it can not accelerate neutral particle. Second limitation is that lighter elementary particles like electrons or positrons can not be accelerated and requires important changes or modifications of the device. In addition to these, there are two other important limitations as described here.

## Relativistic effect

The relativistic effect becomes significant enough to be neglected when particle achieve 10 % of the speed of light. The energy corresponding to this speed for a proton is about 5MeV. Initially, the small relativistic effect is accommodated by an standard cyclotron, but it begins to fail to accelerate charged particle at higher energy level of 50 MeV or so.

At higher speed, the mass of the particle increases in accordance with following equation :

$m=\frac{{m}_{0}}{\sqrt{\left(1-\frac{{v}^{2}}{{c}^{2}}\right)}}$

where mo is rest mass and c is the speed of light in vacuum. The particle becomes heavier at higher speed. Putting this in the expression of frequency, we have :

$⇒\nu =\frac{qB\sqrt{\left(1-\frac{{v}^{2}}{{c}^{2}}\right)}}{2\pi {m}_{0}}$ $⇒\nu ={\nu }_{0}\sqrt{\left(1-\frac{{v}^{2}}{{c}^{2}}\right)}$

where ${\nu }_{0}$ is classical frequency. Clearly, the frequency of revolution decreases with increasing velocity whereas frequency of applied electrical oscillator is fixed. The particle, therefore, gets out of step with the alternating electrical field. As a result, speed of the particle does not increase beyond a certain value.

## High energy particle

The cyclotron is also limited by the mere requirement of magnet size as radius of Dees increases with increasing speed of the particle being accelerated. Let us calculate speed corresponding of a 100 GeV particle in a magnetic field of 1 T. The radius of revolution is related to kinetic energy :

${K}_{\text{max}}=\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$ $⇒R=\sqrt{\left(\frac{2m{K}_{\text{max}}}{{q}^{2}{B}^{2}}\right)}$

The given kinetic energy is :

$⇒{K}_{\text{max}}=100X{10}^{9}\phantom{\rule{1em}{0ex}}eV={10}^{11}X1.6X{10}^{-19}=1.6X{10}^{-8}\phantom{\rule{1em}{0ex}}J$

Now, putting values assuming particle to be a proton,

$⇒R=\sqrt{\left(\frac{2X1.66X{10}^{-27}X1.6X{10}^{-8}}{{\left(1.6X{10}^{-19}\right)}^{2}X1}\right)}$ $⇒R=0.144X{10}^{2}=14.4m$

We can imagine how costly it would be to create magnet of such an extent. For higher energy, the required radius could be in kilometers.

## Synchrocyclotron and synchrotron

The synchrocyclotron is a device that addresses the limitation due to relativistic effect. The frequency of oscillator is reduced gradually in order to maintain the resonance with the spiral motion of charged particle. Note that magnetic field remains constant as in the case of cyclotron.

In synchrotron as against synchrocyclotron, both magnetic field and electric field are variable. It aims to address both the limitations due to relativistic effect as well as due to the requirement of large cross section of magnets. The particle is accelerated along a fixed large circular path inside a torus shaped tunnel. The magnetic field here bends the particle, where as electric field changes speed. Clearly, the requirement of a large cross section of magnet is converted into multiple bending magnets along a large radius fixed circular path.

can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!