<< Chapter < Page Chapter >> Page >
f ( x ) = 1 1 + 25 x 2 .

As we increase the degree of the approximation, and supposedly increase the accuracy of the approximation, the following figure is produced:

The red curve is the function we are trying to approximate on a set of evenly spaced points.The blue curve is a 5 th order approximation, and the green curve is a 9 th order approximation. As we can see, the approximation actually becomes worse; this is a pitfall we would like to avoid.

Chebyshev points, fourier matrices, and plots

To sidestep the possibility of suffering Runge's Phenomenon, we can redefine our grid using Chebyshev points instead of equally spaced points. The Chebyshev points cluster near the boundary of the grid (in the two dimensional case, the interval), and are more widely spaced in the center of the grid. This forces the interpolation to be much more accurate on the edges of the grid, bounding the error that can occur. In fact, using this method causes the interpolation to converge extremely rapidly.

To handle periodicity in the θ variable, we borrow some theory about Fourier Discretization Matrices from Trefethen's Spectral Methods in MATLAB [link] . These matrices allow us to solve our differential equation on the interior of the cylinder while leaving the boundary conditions fixed.

With this framework, our program allows us to input a height h , a radius function r ( t ) , and two functions f ( θ ) = ϕ ( θ , 0 ) and g ( θ ) = ϕ ( θ , h ) that describe the boundary conditions, and finds a very close approximation of a function ϕ ( θ , t ) which satisfies Equation [link] . Some images produced by this program can be seen in Section (10).

Limitations and future work

Decisions made at the beginning of our research period have, of course, led our work in a particular direction. As is often the case, these decisions placed certain limitations on our results that were not foreseen at the time. The limitations are not insurmountable, nor do they invalidate any of the above, but are worth thinking about.

We have primarily discussed a function ϕ : [ 0 , 2 π ] × [ 0 , h ] R , periodic in θ , as a representative for a vector field on a surface S . Certainly, every such function defines a vector field via the relation given in equation [link] . However, this vector field is not uniquely defined: ϕ n = ϕ 0 + 2 n π describes the same vector field as ϕ 0 for all integers n .

Furthermore, not every vector field can be described by such a ϕ . By requiring ϕ to be periodic, the vector field V ( ϕ ) must “untwist" as much as it “twists." This is convenient, for multiple reasons. Periodicity simplifies many of the integration by parts steps taken in our proofs. It also prevents a situation in which the top and bottom boundary conditions have different numbers of twists. Given such conditions, it is topologically impossible to define a continuous vector field between them. However, placing a periodicity requirement on ϕ also rules out perfectly valid vector fields: for example, a field with exactly one twist on every horizontal slice.

It would not be overly difficult, we imagine, to rethink our results to accommodate continuous vector vields that cannot be represented by periodic ϕ . One result which is slightly troublesome is uniqueness on a short cylinder (Theorem 1). Given boundary conditions that are constantly “straight up" on the bottom and “straight down" on the top, and a vector field V between them, one can construct a vector field V ˜ with identical energy to V by having V ˜ rotate clockwise wherever V rotates counterclockwise, and vice versa.

Perhaps another early limiting choice which was looking specifically at unit-length vector fields on unit-height cylinders with unit radius. Fixing three quantities greatly restricts the problem, and while this was certainly conductive to finding early results, we were misled to search for analogues in more general cases. Again, uniqueness comes to mind; somehow, the ratio between vector length and cylinder radius creates a special value between 8 and 10 . Once we turned our attention to surfaces of general radius and height, we did not find such a point, and it is quite possible that there is no equivalent.

There are a number of directions in which we can continue our research. Resolving the above questions is one such direction. We would also like to answer the questions about existence of solutions to Equation [link] that have nagged us since the beginning: is there always a vector field which attains the minimal energy value on any given surface? We have conjectured many “limiting results," as in "Limiting Results on the Cylinder" , that we suspect are true but have not proven yet.

Another problem that we have only just begun to examine is, in a way, a reversal of the current problem. Given a function ϕ ( θ , t ) : [ 0 , 2 π ] × [ 0 , h ] R , can we find a radius function r ( t ) : [ 0 , h ] ( 0 , ) describing a surface of rotation S such that the energy of the vector field described by ϕ on S is minimal over all surfaces of height h ? Since energy is inversely proportional to radius, r ( t ) tends toward for all t ; we must somehow constrain r . Bounding its derivative and fixing the surface area of S are two approaches we have considered. This problem seems to have plenty of potential for future research.

Numerical plots

In this section we reproduce some numerical results as described in Section (7).

First, the plot of ϕ and surface for a cylinder of height 1 with boundary conditions f ( θ ) = c o s ( θ ) and g ( θ ) = s i n ( θ )

Second, the plot of ϕ and surface with radius r ( t ) = 2 + s i n ( t ) and boundary conditions f ( θ ) = c o s ( θ ) and g ( θ ) = s i n ( θ )

Summary

This report summarizes work done as part of the Calculus of Variations PFUG under Rice University's VIGRE program. VIGRE is a program of Vertically Integrated Grants for Research and Education in the Mathematical Sciences under the direction of the National Science Foundation. A PFUG is a group of Postdocs, Faculty, Undergraduates and Graduate students formed round the study of a common problem.

This module investigates the “kinetic energy" of unit-length vector fields on surfaces of rotation, focusing mainly on minimizing energy given a surface and boundary conditions. Questions of existence and uniqueness are explored.

Acknowledgements

This Connexions module describes work conducted as part of Rice University's VIGRE program, supported by National Science Foundation grant DMS-0739420. We would like to thank the faculty mentors, Bob Hardt, Leo Rosales, and Mike Wolf, and our graduate student mentors, Chris Davis and Renee Laverdiere, for all their help this summer. Without their assistance, this paper would be noticeably shorter. We are also indebted to a number of members of the math department who volunteered advice, notably Frank Jones and Rolf Ryham. Nearly all of the numerical approximation work is thanks to Mark Embree, who, after hearing us present our work, accomplished in an hour what we had been unable to do all summer. We also thank the undergraduate members of this group, Yan Digilov, Bill Eggert, Michael Jauch, Rob Lewis, and Hector Perez.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask