# 5.1 Lab 4: lab  (Page 4/4)

 Page 4 / 4

When implementing your spectrogram algorithm, make the following assumptions:

• use a Hamming window
• the window length is N=256
• zero-pad by a factor of 2
• do not overlap

Here are some things to keep in mind:

• do not vectorize your code or use MATLAB-specific helper functions that are not available on the tablet (such as `zeros()` or `norm()` ), as you want to make porting it to C as straightforward as possible.
• Retain only half of the FFT output, as it is conjugate symmetric (make sure you know why!)
• If X = Xr + jXi is a complex number, the magnitude squared operation computes Xr^2 + Xi^2.
• Because power can vary by orders of magnitude, the Log computation is used to reduce the dynamic range of the spectrogram output; this is useful when visualizing the data.

If your input signal is 8192 samples long, then your spectrogram output can be thought of as a 256 x 32 real-valued matrix. Make sure to understand why. You can then use the `image()` or `imagesc()` functions in MATLAB to visualize the data.

## Specifications

Your task is to implement a C version of the spectrogram algorithm that you wrote in Part 3. Here are some guidelines for how to proceed:

• Remember you are doing block-based processing. Every time `process()` is called, `inBuf` has `N` samples available to be processed.
• Read Section 2.1 of the FFTW tutorial to understand the data structures and function calls of the FFTW library.
• Remember that floating point is available on this processor.
• Use the test vector to verify that intermediate operations are being computed correctly (e.g., multiplication, zero-padding, log function, etc.).
• For extra credit , implement a scheme that allows for arbitrary overlapping. This may require modifying code in `Lab4Activity.java`

## Scaling the output

The values of `outBuf` must be between 0.0 and 1.0. This is because the output values are directly mapped to RGB colors, with each color channel being 8 bits. As the spectrogram output is generally not in between 0.0 and 1.0, you will need to find an appropriate mapping.

One possible mapping is to linearly scale and saturate the spectrogram output; you must determine the scaling parameters experimentally by processing real audio data. Here is an outline of one way to do this:

• Start up the GDB debugger and `Resume` with all breakpoints disabled.
• While playing a loud tone (i.e., generate in MATLAB and play out through headphones), set a breakpoint right before your `process()` function returns.
• Export the `inBuf` array to a file. Review Part 2: Exporting Variables to a File if you don't remember how.
• Repeat this process for noise-only input.
• Import the two files into MATLAB to determine a suitable dynamic range.
This method also enables you to verify the functional correctness of your C code by exporting the spectrogram output to a file.

## Quiz information

Be able to describe the effects of windowing and zero-padding on FFT spectral analysis. Know basic properties of the Fourier transform, DTFT, and DFT. What are the trade-offs between block-based and sample-by-sample processing? Although we did not require you to implement it, understand the effects of overlapping when computing the STFT. Understand the basic Android project structure and the relationship between Java and C programming for Android.

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!