<< Chapter < Page Chapter >> Page >
This module will give a very brief tutorial on some of the basic terms and ideas of linear algebra. These will include linear independence, span, and basis.

This brief tutorial on some key terms in linear algebra is not meant to replace or be very helpful to those of you trying togain a deep insight into linear algebra. Rather, this brief introduction to some of the terms and ideas of linear algebra ismeant to provide a little background to those trying to get a better understanding or learn about eigenvectors andeigenfunctions, which play a big role in deriving a few important ideas on Signals and Systems. The goal of theseconcepts will be to provide a background for signal decomposition and to lead up to the derivation of the Fourier Series .

Linear independence

A set of vectors x x i n x 1 x 2 x k are linearly independent if none of them can be written as a linear combination of the others.

Linearly Independent
For a given set of vectors, x 1 x 2 x n , they are linearly independent if c 1 x 1 c 2 x 2 c n x n 0 only when c 1 c 2 c n 0
Graphical representation of two vectors that are not linearly independent.

We are given the following two vectors: x 1 3 2 x 2 1 2 These are linearly independent since c 1 x 1 c 2 x 2 only if c 1 c 2 0 . Based on the definition, this proof shows that these vectors are indeed linearly independent. Again, wecould also graph these two vectors (see [link] ) to check for linear independence.

Got questions? Get instant answers now!
Graphical representation of two vectors that are linearly independent.

Are x 1 x 2 x 3 linearly independent? x 1 3 2 x 2 1 2 x 3 -1 0

By playing around with the vectors and doing a little trial and error, we will discover the followingrelationship: x 1 x 2 2 x 3 0 Thus we have found a linear combination of these threevectors that equals zero without setting the coefficients equal to zero. Therefore, these vectors are not linearly independent !

Got questions? Get instant answers now!

As we have seen in the two above examples, often times the independence of vectors can be easily seen through a graph.However this may not be as easy when we are given three or more vectors. Can you easily tell whether or not thesevectors are independent from [link] . Probably not, which is why the method used in the above solution becomesimportant.

Plot of the three vectors. Can be shown that a linear combination exists among the three, and therefore they are not linear independent.

A set of m vectors in n cannot be linearly independent if m n .

Span

Span
The span of a set of vectors x 1 x 2 x k is the set of vectors that can be written as a linear combination of x 1 x 2 x k span x 1 x k α α i n α 1 x 1 α 2 x 2 α k x k

Basis

Basis
A basis for n is a set of vectors that: (1) spans n and (2) is linearly independent.
Clearly, any set of n linearly independent vectors is a basis for n .

We are given the following vector e i 0 0 1 0 0 where the 1 is always in the i th place and the remaining values are zero. Then the basis for n is i i

    1 2 n
e i
i i
    1 2 n
e i is called the standard basis .

Got questions? Get instant answers now!

h 1 1 1 h 2 1 -1 h 1 h 2 is a basis for 2 .

Got questions? Get instant answers now!
Plot of basis for 2

If b 1 b 2 is a basis for n , then we can express any x n as a linear combination of the b i 's: α α i x α 1 b 1 α 2 b 2 α n b n

Given the following vector, x 1 2 writing x in terms of e 1 e 2 gives us x e 1 2 e 2

Got questions? Get instant answers now!

Try and write x in terms of h 1 h 2 (defined in the previous example).

x 3 2 h 1 -1 2 h 2

Got questions? Get instant answers now!

In the two basis examples above, x is the same vector in both cases, but we can express it in many different ways (we give only two out of many, manypossibilities). You can take this even further by extending this idea of a basis to function spaces .

As mentioned in the introduction, these concepts of linear algebra will help prepare you to understand the Fourier Series , which tells us that we can express periodic functions, f t , in terms of their basis functions, ω 0 n t .

Khan lecture on basis of a subspace

video from Khan Academy , Basis of a Subspace - 20 min.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask