# 5.2 Solving problems

 Page 1 / 2

## Using differential calculus to solve problems

We have seen that differential calculus can be used to determine the stationary points of functions, in order to sketch their graphs. However, determining stationary points also lends itself to the solution of problems that require some variable to be optimised .

For example, if fuel used by a car is defined by:

$f\left(v\right)=\frac{3}{80}{v}^{2}-6v+245$

where $v$ is the travelling speed, what is the most economical speed (that means the speed that uses the least fuel)?

If we draw the graph of this function we find that the graph has a minimum. The speed at the minimum would then give the most economical speed.

We have seen that the coordinates of the turning point can be calculated by differentiating the function and finding the $x$ -coordinate (speed in the case of the example) for which the derivative is 0.

Differentiating [link] , we get: ${f}^{\text{'}}\left(v\right)=\frac{3}{40}v-6$ If we set ${f}^{\text{'}}\left(v\right)=0$ we can calculate the speed that corresponds to the turning point.

$\begin{array}{ccc}\hfill {f}^{\text{'}}\left(v\right)& =& \frac{3}{40}v-6\hfill \\ \hfill 0& =& \frac{3}{40}v-6\hfill \\ \hfill v& =& \frac{6×40}{3}\hfill \\ & =& 80\hfill \end{array}$

This means that the most economical speed is 80 km $·$ hr ${}^{-1}$ .

The sum of two positive numbers is 10. One of the numbers is multiplied by the square of the other. If each number is greater than 0, find the numbers that make this product a maximum.

1. Let the two numbers be $a$ and $b$ . Then we have:

$a+b=10$

We are required to minimise the product of $a$ and $b$ . Call the product $P$ . Then:

$P=a·b$

We can solve for $b$ from [link] to get:

$b=10-a$

Substitute this into [link] to write $P$ in terms of $a$ only.

$P=a\left(10-a\right)=10a-{a}^{2}$

2. The derivative of [link] is: ${P}^{\text{'}}\left(a\right)=10-2a$

3. Set ${P}^{\text{'}}\left(a\right)=0$ to find the value of $a$ which makes $P$ a maximum.

$\begin{array}{ccc}\hfill {P}^{\text{'}}\left(a\right)& =& 10-2a\hfill \\ \hfill 0& =& 10-2a\hfill \\ \hfill 2a& =& 10\hfill \\ \hfill a& =& \frac{10}{2}\hfill \\ \hfill a& =& 5\hfill \end{array}$

Substitute into [link] to solve for the width.

$\begin{array}{ccc}\hfill b& =& 10-a\hfill \\ & =& 10-5\hfill \\ & =& 5\hfill \end{array}$
4. The product is maximised if $a$ and $b$ are both equal to 5.

Michael wants to start a vegetable garden, which he decides to fence off in the shape of a rectangle from the rest of the garden. Michael only has 160 m of fencing, so he decides to use a wall as one border of the vegetable garden. Calculate the width and length of the garden that corresponds to largest possible area that Michael can fence off.

1. The important pieces of information given are related to the area and modified perimeter of the garden. We know that the area of the garden is: $A=w·l$ We are also told that the fence covers only 3 sides and the three sides should add up to 160 m. This can be written as: $160=w+l+l$

However, we can use [link] to write $w$ in terms of $l$ : $w=160-2l$ Substitute [link] into [link] to get: $A=\left(160-2l\right)l=160l-2{l}^{2}$

2. Since we are interested in maximising the area, we differentiate [link] to get: ${A}^{\text{'}}\left(l\right)=160-4l$

3. To find the stationary point, we set ${A}^{\text{'}}\left(l\right)=0$ and solve for the value of $l$ that maximises the area.

$\begin{array}{ccc}\hfill {A}^{\text{'}}\left(l\right)& =& 160-4l\hfill \\ \hfill 0& =& 160-4l\hfill \\ \hfill \therefore 4l& =& 160\hfill \\ \hfill l& =& \frac{160}{4}\hfill \\ \hfill l& =& 40\mathrm{m}\hfill \end{array}$

Substitute into [link] to solve for the width.

$\begin{array}{ccc}\hfill w& =& 160-2l\hfill \\ & =& 160-2\left(40\right)\hfill \\ & =& 160-80\hfill \\ & =& 80\mathrm{m}\hfill \end{array}$
4. A width of 80 m and a length of 40 m will yield the maximal area fenced off.

## Solving optimisation problems using differential calculus

1. The sum of two positive numbers is 20. One of the numbers is multiplied by the square of the other. Find the numbers that make this product a maximum.
2. A wooden block is made as shown in the diagram. The ends are right-angled triangles having sides $3x$ , $4x$ and $5x$ . The length of the block is $y$ . The total surface area of the block is $3600{\mathrm{cm}}^{2}$ .
1. Show that $y=\frac{300-{x}^{2}}{x}$ .
2. Find the value of $x$ for which the block will have a maximum volume. (Volume = area of base $×$ height.)
3. The diagram shows the plan for a verandah which is to be built on the corner of a cottage. A railing $ABCDE$ is to be constructed around the four edges of the verandah. If $AB=DE=x$ and $BC=CD=y$ , and the length of the railing must be 30 metres, find the values of $x$ and $y$ for which the verandah will have a maximum area.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!