<< Chapter < Page Chapter >> Page >
(Blank Abstract)

Introducción

Uno de los conceptos más importantes para el DSP es poder representar la relación de entrada y salida de cualquier sistema LTI. Una ecuación de diferencia de coeficiente linear constante (LCCDE) nos sirve para expresar esta relación en un sistema discreto. El escribir la secuencia de entradas y salidas, las cuales representan las características del sistema LTI, como una ecuación de diferencia nos ayuda entender y manipular el sistema.

La Ecuación de Diferencia
Es una ecuación que muestra la relación entra valores consecutivos de una secuencia y la diferencia entre ellos. Usualmente se escribe en una ecuación recurrente para que la salida del sistema se pueda calcular de las entradas de la señal y sus valores anteriores.

Formulas generales para la ecuación de diferencia

La ecuación de diferencia nos ayuda a describir la salida del sistema descrito por la formula para cualquier n . La propiedad mas importante para esta ecuación es la habilidad de poder encontrar la transformada, H z , del sistema. Las siguientes subsecciones veremos la forma genera de la ecuación diferencial en la conversión a la transformada-z directamente de su ecuación de diferencia.

Ecuación de diferencia

La forma general de este tipo de ecuación es la siguiente:

k 0 N a k y n k k 0 M b k x n k
También se puede expresar como una salida recurrente, la cual se ve así:
y n k 1 N a k y n k k 0 M b k x n k
De esta ecuación, note que y n k representa las salidas y x n k epresenta las entradas. El valor de N representa el orden de la ecuación de diferencia que corresponde a la memoria del sistema representado. Ya que la ecuación depende de los valores pasados de la salida, para calcular una solución numérica, algunos valores pasados, conocidos como condiciones iniciales , se deben saber.

Conversión a la transformada-z

Usando la formula, ,podemos generalizar la función de transferencia , H z , para cualquier función de diferencia. Los siguientes pasos se deben de tomar para convertir cualquier función de diferencia en su función de diferencia. Primero se tiene que tomar la transformada de Fourier de todos los términos en la . Después usando la propiedad de linealidad para sacar la transformada fuera de la sumatoria y usamos la propiedad de desplazamiento en el tiempo de la transformada –z para cambiar los términos desplazados en el tiempo a exponenciales. Después de hacer esto, llegamos a la siguiente ecuación: a 0 1 .

Y z k 1 N a k Y z z k k 0 M b k X z z k
H z Y z X z k 0 M b k z k 1 k 1 N a k z k

Conversión a la respuesta de frecuencia

Ya que tenemos la transformada- z, podemos tomar el siguiente paso y definir la respuesta a la frecuencia del sistema, o filtro, que esta siendo representado por la ecuación de diferencia.

Recuerde que la razón por la que usamos estas formulas es el poder diseñar un filtro. Un LCCDE es una de las maneras más fáciles de representar los filtros FIL. Al encontrar la respuesta de frecuencia, podemos ver las funciones básicas de cualquier filtro representado por una simple LCCDE. La formula general para la respuesta de frecuencia en la transformada-z es la siguiente.
La conversión es simplemente tomar la formula de la transformada-z, H z , y remplazarla en cualquier instante de z con w .
H w z w H z k 0 M b k w k k 0 N a k w k
Después de que usted entienda la derivación de esta formula vea el modulo titulado el filtro y la transformada-z para que vea las ideas de la transformada-z y la ecuación de diferencia, y las graficas de polos y ceros se usan al diseñar un filtro.

Ejemplo

Encontrando la función de diferencia

Aquí se muestra un ejemplo de tomar los pasos opuestos a los descritos anteriormente: dada una función de transferencia uno puede calcular fácilmente la ecuación de diferencia del sistema.

H z z 1 2 z 1 2 z 3 4
Dada una función de transferencia de un filtro, queremos encontrar la función de diferencia. Para hacer esto, expanda los os polinomios y divídalos por el orden mas alto de z .
H z z 1 z 1 z 1 2 z 3 4 z 2 2 z 1 z 2 2 z 1 3 8 1 2 z -1 z -2 1 1 4 z -1 3 8 z -2
De esta función de transferencia, los coeficientes de los dos polinomios serán nuestros valores de a k y b k que se encuentran el la forma general de la función de diferencias, . Usando estos coeficientes y la forma anterior de la función de transferencia, podemos escribir la ecuación de diferencia así:
x n 2 x n 1 x n 2 y n 1 4 y n 1 3 8 y n 2
En el último paso re-escribimos la ecuación de diferencia en una forma más común, mostrando su naturaleza recurrente del sistema.
y n x n 2 x n 1 x n 2 -1 4 y n 1 3 8 y n 2

Got questions? Get instant answers now!

Resolviendo un lccde

Para resolver este tipo de ecuaciones y poderlas usar en el análisis de sistemas LTI, tenemos que encontrar las salidas del sistema que están basadas en una entrada del sistema, x n ,, y basadas en un conjunto de condiciones iniciales. Existen dos métodos para resolver un LCCDE: el método directo , y el método indirecto , este último basado en la transformada-z. En las siguientes subsecciones se explica brevemente las formulas para resolver los LCCDE así como el uso de estos dos métodos.

Método directo

La solución final de la salida, utilizando este método, es una suma dividida en dos partes expresadas de la siguiente manera:

y n y h n y p n
La primera parte, y h n , se conoce como la solución homogénea y la segunda parte, y h n ,se le llama las solución particular . El siguiente método es similar al usado para resolver las ecuaciones diferenciales, así que si ya tomo un curso de ecuaciones diferenciales, este método le será familiar.

Solución homogénea

Se empieza al asumir que la entrada es igual a cero, x n 0 .Después, tenemos que solucionar la ecuación de diferencia homogénea:

k 0 N a k y n k 0
Para resolver esto, asumimos que la solución tiene la forma de un exponencial. Usaremos lambda, λ , para representar los términos exponenciales. Ahora tenemos que resolver la siguiente ecuación:
k 0 N a k λ n k 0
Expandiremos la ecuación y factorizaremos todos los términos de lambda. Esto nos dará un polinomio dentro del paréntesis, lo cual se conoce como polinomio característico . Las raíces de este polinomio son la clave para resolver esto ecuación. Si se tienen raíces diferentes, la solución general es la siguiente:
y h n C 1 λ 1 n C 2 λ 2 n C N λ N n
Sin embargo, si la ecuación característica contiene múltiples raíces la solución mostrada anterior mente sufre algunos cambios. La versión modificada de la ecuación se muestra abajo, donde λ 1 tiene K raíces:
y h n C 1 λ 1 n C 1 n λ 1 n C 1 n 2 λ 1 n C 1 n K 1 λ 1 n C 2 λ 2 n C N λ N n

Solución particular

Esta solución, y p n , será aquella que resuelva la ecuación de diferencia general:

k 0 N a k y p n k k 0 M b k x n k
Para resolverla, nuestra estimación de la solución para y p n tomara la forma de nuestra entrada, x n . Después de esto, uno nada mas tiene que sustituir la respuesta y resolver la ecuación.

Método indirecto

Este método utiliza la relación entre la ecuación de diferencia y la transformada-z, para encontrar la solución. La idea es convertir la ecuación de diferencia a su transformada-z, para obtener una salida, fue vista anteriormente ,. Y z . Al usar la transformada inversa y usando la expansión parcial de fracciones, podemos encontrar la solución.

Questions & Answers

Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask