<< Chapter < Page Chapter >> Page >

Solid state structures and superconductors


  • Build examples of: simple cubic, body centered cubic and face centered cubic cells.
  • Understand and familiarize with three-dimensionality of solid state structures.
  • Understand how binary ionic compounds (compounds made up of two different types of ions) pack in a crystal lattice.
  • Observe the special electromagnetic characteristics of superconducting materials using 1,2,3-superconductor YBa 2 Cu 3 O 8 size 12{ ital "YBa" rSub { size 8{2} } ital "Cu" rSub { size 8{3} } O rSub { size 8{8 - times } } } {} , discovered in 1986 by Dr. Paul Chu at the University of Houston.


Your grade will be determined according to the following

  • Pre-lab (10%)
  • Lab report form. (80%)
  • TA points (10%)

Before coming to lab:

  • Read introduction and model kits section
  • Complete prelab exercise


From the three states of matter, the solid state is the one in which matter is highly condensed. In the solid state, when atoms, molecules or ions pack in a regular arrangement which can be repeated "infinitely" in three dimensions, a crystal is formed. A crystalline solid, therefore, possesses long-range order; its atoms, molecules, or ions occupy regular positions which repeat in three dimensions. On the other hand an amorphous solid does not possess any long-range order. Glass is an example of an amorphous solid. And even though amorphous solids have very interesting properties in their own right that differ from those of crystalline materials, we will not consider their structures in this laboratory exercise.


The simplest example of a crystal is table salt, or as we chemists know it, sodium chloride (NaCl). A crystal of sodium chloride is composed of sodium cations ( Na + size 12{ ital "Na" rSup { size 8{+{}} } } {} ) and chlorine anions ( Cl size 12{ ital "Cl" rSup { size 8{ - {}} } } {} ) that are arranged in a specific order and extend in three dimensions. The ions pack in a way that maximizes space and provides the right coordination for each atom (ion). Crystals are three dimensional, and in theory, the perfect crystal would be infinite. Therefore instead of having a molecular formula, crystals have an empirical formula based on stoichiometry. Crystalline structures are defined by a unit cell which is the smallest unit that contains the stoichiometry and the“spatial arrangement”of the whole crystal. Therefore a unit cell can be seen as the building block of a crystal.




The crystal lattice


In a crystal, the network of atoms, molecules, or ions is known as a crystal lattice or simply as a lattice. In reality, no crystal extends infinitely in three dimensions and the structure (and also properties) of the solid will vary at the surface (boundaries) of the crystal. However, the number of atoms located at the surface of a crystal is very small compared to the number of atoms in the interior of the crystal, and so, to a first approximation, we can ignore the variations at the surface for much of our discussion of crystals. Any location in a crystal lattice is known as a lattice point. Since the crystal lattice repeats in three dimensions, there will be an entire set of lattice points which are identical. That means that if you were able to make yourself small enough and stand at any such lattice point in the crystal lattice, you would not be able to tell which lattice point of the set you were at–the environment of a lattice point is identical to each correspondent lattice point throughout the crystal. Of course, you could move to a different site (a non-correspondent lattice point) which would look different. This would constitute a different lattice point. For example, when we examine the sodium chloride lattice later, you will notice that the environment of each sodium ion is identical. If you were to stand at any sodium ion and look around, you would see the same thing. If you stood at a chloride ion, you would see a different environment but that environment would be the same at every chloride ion. Thus, the sodium ion locations form one set of lattice points and the chloride ion locations form another set. However, lattice points not only exist in atom positions. We could easily define a set of lattice points at the midpoints between the sodium and chloride ions in the crystal lattice of sodium chloride.

Questions & Answers

Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Gen chem lab. OpenStax CNX. Oct 12, 2009 Download for free at http://cnx.org/content/col10452/1.51
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Gen chem lab' conversation and receive update notifications?