<< Chapter < Page Chapter >> Page >

Funksies in die vorm y = a x + q

Funksies met die algemene vorm y = a x + q word reguitlyn funksies genoem. In die vergelyking, y = a x + q , is a en q konstantes en het verskillende invloede op die grafiek van die funksie. Die algemene grafiek van so 'n funksie word gegee in [link] vir die funksie f ( x ) = 2 x + 3 .

Grafiek van f ( x ) = 2 x + 3

Ondersoek: funksies van die vorm y = a x + q

  1. Op dieselfde assestelsel, trek die volgende grafieke:
    1. a ( x ) = x - 2
    2. b ( x ) = x - 1
    3. c ( x ) = x
    4. d ( x ) = x + 1
    5. e ( x ) = x + 2
    Gebruik jou resultate om die invloed van verskillende waardes van q op die resulterende grafiek af te lei.
  2. Op dieselfde assestelsel, teken die volgende grafieke:
    1. f ( x ) = - 2 . x
    2. g ( x ) = - 1 . x
    3. h ( x ) = 0 . x
    4. j ( x ) = 1 . x
    5. k ( x ) = 2 . x
    Gebruik jou resultate om die invloed van verskillende waardes van a op die resulterende grafiek af te lei.

Jy behoort te vind dat die waarde van a die helling van die grafiek beïnvloed. Soos a vermeerder, vermeerder die helling van die grafiek ook. Indien a > 0 sal die grafiek vermeerder van links na regs (opwaartse helling). Indien a < 0 sal die grafiek verminder van links na regs (afwaartse helling). Dit is hoekom daar na a verwys word as die helling of die gradiënt van 'n reguitlynfunksie.

Jy behoort ook te vind dat die waarde van q die punt bepaal waar die grafiek die y -as sny. Om hierdie rede, staan q bekend as die y-afsnit .

Die verskillende eienskappe word opgesom in [link] .

Opsomming van algemene vorms en posisies van grafieke van funksies in die vorm y = a x + q
a > 0 a < 0
q > 0
q < 0

Definisieversameling en waardeversameling

Vir f ( x ) = a x + q , is die definisieversameling { x : x R } , omdat daar geen waarde is van x R waarvoor f ( x ) ongedefinieërd is nie.

Die waardeversameling van f ( x ) = a x + q is ook { f ( x ) : f ( x ) R } omdat daar geen waarde van f ( x ) R waarvoor f ( x ) ongedefinieërd is nie.

Byvoorbeeld, die definisieversameling van g ( x ) = x - 1 is { x : x R } omdat daar geen waardes is van x R waarvoor g ( x ) ongedefinieërd is nie. Die waardeversameling van g ( x ) is { g ( x ) : g ( x ) R } .

Afsnitte

Vir funksies van die vorm, y = a x + q word die metode om die afsnitte met die x - en y -asse te bereken, uiteengesit.

Die y -afsnitte word as volg bereken:

y = a x + q y i n t = a ( 0 ) + q = q

Byvoorbeeld, die y -afsnit van g ( x ) = x - 1 word bepaal deur x = 0 te stel en dan op te los:

g ( x ) = x - 1 y i n t = 0 - 1 = - 1

Die x -afsnit word as volg bereken:

y = a x + q 0 = a · x i n t + q a · x i n t = - q x i n t = - q a

Byvoorbeeld, die x -afsnit van g ( x ) = x - 1 word gegee deur y = 0 in te stel en dan op te los:

g ( x ) = x - 1 0 = x i n t - 1 x i n t = 1

Draaipunte

Die grafiek van 'n reguitlynfunksie het nie draaipunte nie.

Simmetrie-asse

Die grafieke van reguitlynfunksies het gewoonlik nie simmerie-asse nie.

Skets van grafieke van die vorm f ( x ) = a x + q

Om die grafieke van die vorm f ( x ) = a x + q te skets, moet ons die volgende drie eienskappe vind:

  1. die teken van a
  2. y -afsnit
  3. x -afsnit

Slegs twee punte word benodig om 'n reguitlyn te trek. Die maklikste punte is die x -afsnit (waar die lyn die x -as sny) en die y -afsnit.

Byvoorbeeld, skets die grafiek van g ( x ) = x - 1 . Merk duidelik die afsnitte.

Eerstens bereken ons dat a > 0 . Dit beteken die grafiek gaan 'n opwaartse helling hê.

Die y -afsnit word bepaal deur x = 0 te stel en is vroeër bereken as y i n t = - 1 . Die x -afsnit word bepaal deur y = 0 te stel en is vroeër bereken as x i n t = 1 .

Grafiek van die funksie g ( x ) = x - 1

Teken die grafiek van y = 2 x + 2 .

  1. Om die y-afsnit te vind, stel x = 0 .

    y = 2 ( 0 ) + 2 = 2
  2. Om die x-afsnit te kry, stel y = 0 .

    0 = 2 x + 2 2 x = - 2 x = - 1

Afsnitte

  1. Skryf die y -afsnitte neer vir die volgende reguitlyngrafieke:
    1. y = x
    2. y = x - 1
    3. y = 2 x - 1
    4. y + 1 = 2 x
  2. Gee die vergelyking van die grafiek wat hieronder geskets is:
  3. Skets die volgende verbande op dieselfde assestelsel, merk die koördinate van die afsnitte duidelik: x + 2 y - 5 = 0 en 3 x - y - 1 = 0

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask