# 6.2 Common fourier series

 Page 1 / 1
Constant, Sinusoid, Square, Triangle, and sawtooth waveforms, in depth and summarized.

## Introduction

Once one has obtained a solid understanding of the fundamentals of Fourier series analysis and the General Derivation of the Fourier Coefficients , it is useful to have an understanding of the common signals used in Fourier Series Signal Approximation.

## Deriving the fourier coefficients

Consider a square wave f(x) of length 1. Over the range [0,1), this can be written as

$x\left(t\right)=\left\{\begin{array}{cc}1\hfill & t\le \frac{1}{2};\hfill \\ -1\hfill & t>\frac{1}{2}.\hfill \end{array}\right)$

## Real even signals

Given that the square wave is a real and even signal,
• $f\left(t\right)=f\left(-t\right)$ EVEN
• $f\left(t\right)=f$ * $\left(t\right)$ REAL
• therefore,
• ${c}_{n}={c}_{-n}$ EVEN
• ${c}_{n}={c}_{n}$ * REAL

Consider this mathematical question intuitively: Can a discontinuous function, like the square wave, be expressed as asum, even an infinite one, of continuous signals? One should at least be suspicious, and in fact, it can't be thusexpressed.

The extraneous peaks in the square wave's Fourier series never disappear; they are termed Gibb's phenomenon after the American physicist Josiah Willard Gibbs. They occur whenever the signal isdiscontinuous, and will always be present whenever the signal has jumps.

## Deriving the fourier coefficients for other signals

The Square wave is the standard example, but other important signals are also useful to analyze, and these are included here.

## Constant waveform

This signal is relatively self-explanatory: the time-varying portion of the Fourier Coefficient is taken out, and we are left simply with a constant function over all time.

$x\left(t\right)=1$

## Sinusoid waveform

With this signal, only a specific frequency of time-varying Coefficient is chosen (given that the Fourier Series equation includes a sine wave, this is intuitive), and all others are filtered out, and this single time-varying coefficient will exactly match the desired signal.

$x\left(t\right)=sin\left(\pi t\right)$

## Triangle waveform

$x\left(t\right)=\left\{\begin{array}{cc}t& t\le 1/4\\ 2-\mathrm{4t}& 1/4\le t\le 3/4\\ -7/4+\mathrm{4t}& 3/4\le t\le 1\end{array}\right)$
This is a more complex form of signal approximation to the square wave. Because of the Symmetry Properties of the Fourier Series, the triangle wave is a real and odd signal, as opposed to the real and even square wave signal. This means that
• $f\left(t\right)=-f\left(-t\right)$ ODD
• $f\left(t\right)=f$ * $\left(t\right)$ REAL
• therefore,
• ${c}_{n}=-{c}_{-n}$
• ${c}_{n}=-{c}_{n}$ * IMAGINARY

## Sawtooth waveform

$x\left(t\right)=t-Floor\left(t\right)$
Because of the Symmetry Properties of the Fourier Series, the sawtooth wave can be defined as a real and odd signal, as opposed to the real and even square wave signal. This has important implications for the Fourier Coefficients.

## Summary

To summarize, a great deal of variety exists among the common Fourier Transforms. A summary table is provided here with the essential information.

 Description Time Domain Signal for $t\in \left[0,1\right)$ Frequency Domain Signal Constant Waveform $x\left(t\right)=1$ ${c}_{k}=\left\{\begin{array}{cc}1& k=0\\ 0& k\ne 0\end{array}\right)$ Sinusoid Waveform $x\left(t\right)=sin\left(\pi t\right)$ ${c}_{k}=\left\{\begin{array}{cc}1/2& k=±1\\ 0& k\ne ±1\end{array}\right)$ Square Waveform $x\left(t\right)=\left\{\begin{array}{cc}1& t\le 1/2\\ -1& t>1/2\end{array}\right)$ ${c}_{k}=\left\{\begin{array}{cc}4/\pi k& \mathrm{k}\mathrm{odd}\\ 0& \mathrm{k}\mathrm{even}\end{array}\right)$ Triangle Waveform $x\left(t\right)=\left\{\begin{array}{cc}t& t\le 1/2\\ 1-t& t>1/2\end{array}\right)$ ${c}_{k}=\left\{\begin{array}{cc}-8Sin\left(k\pi \right)/2\right)/{\left(\pi k\right)}^{2}& \mathrm{k}\mathrm{odd}\\ 0& \mathrm{k}\mathrm{even}\end{array}\right)$ Sawtooth Waveform $x\left(t\right)=t/2$ ${c}_{k}=\left\{\begin{array}{cc}0.5& k=0\\ \mathrm{-1}/\pi k& k\ne 0\end{array}\right)$

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!