<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the anatomy of erythrocytes
  • Discuss the various steps in the lifecycle of an erythrocyte
  • Explain the composition and function of hemoglobin

The erythrocyte    , commonly known as a red blood cell (or RBC), is by far the most common formed element: A single drop of blood contains millions of erythrocytes and just thousands of leukocytes. Specifically, males have about 5.4 million erythrocytes per microliter ( µ L) of blood, and females have approximately 4.8 million per µ L. In fact, erythrocytes are estimated to make up about 25 percent of the total cells in the body. As you can imagine, they are quite small cells, with a mean diameter of only about 7–8 micrometers ( µ m) ( [link] ). The primary functions of erythrocytes are to pick up inhaled oxygen from the lungs and transport it to the body’s tissues, and to pick up some (about 24 percent) carbon dioxide waste at the tissues and transport it to the lungs for exhalation. Erythrocytes remain within the vascular network. Although leukocytes typically leave the blood vessels to perform their defensive functions, movement of erythrocytes from the blood vessels is abnormal.

Summary of formed elements in blood

This table shows the different types of cells present in blood, the number of cells, their appearance, and a summary of their function.

Shape and structure of erythrocytes

As an erythrocyte matures in the red bone marrow, it extrudes its nucleus and most of its other organelles. During the first day or two that it is in the circulation, an immature erythrocyte, known as a reticulocyte    , will still typically contain remnants of organelles. Reticulocytes should comprise approximately 1–2 percent of the erythrocyte count and provide a rough estimate of the rate of RBC production, with abnormally low or high rates indicating deviations in the production of these cells. These remnants, primarily of networks (reticulum) of ribosomes, are quickly shed, however, and mature, circulating erythrocytes have few internal cellular structural components. Lacking mitochondria, for example, they rely on anaerobic respiration. This means that they do not utilize any of the oxygen they are transporting, so they can deliver it all to the tissues. They also lack endoplasmic reticula and do not synthesize proteins. Erythrocytes do, however, contain some structural proteins that help the blood cells maintain their unique structure and enable them to change their shape to squeeze through capillaries. This includes the protein spectrin, a cytoskeletal protein element.

Erythrocytes are biconcave disks; that is, they are plump at their periphery and very thin in the center ( [link] ). Since they lack most organelles, there is more interior space for the presence of the hemoglobin molecules that, as you will see shortly, transport gases. The biconcave shape also provides a greater surface area across which gas exchange can occur, relative to its volume; a sphere of a similar diameter would have a lower surface area-to-volume ratio. In the capillaries, the oxygen carried by the erythrocytes can diffuse into the plasma and then through the capillary walls to reach the cells, whereas some of the carbon dioxide produced by the cells as a waste product diffuses into the capillaries to be picked up by the erythrocytes. Capillary beds are extremely narrow, slowing the passage of the erythrocytes and providing an extended opportunity for gas exchange to occur. However, the space within capillaries can be so minute that, despite their own small size, erythrocytes may have to fold in on themselves if they are to make their way through. Fortunately, their structural proteins like spectrin are flexible, allowing them to bend over themselves to a surprising degree, then spring back again when they enter a wider vessel. In wider vessels, erythrocytes may stack up much like a roll of coins, forming a rouleaux, from the French word for “roll.”

Questions & Answers

why are cells small
Hajiahamdy Reply
what is the change if take normal water in our body
Algur Reply
What are variations in physiology
John Reply
pls let's talk about d difference between mitosis and meiosis
olatemiju Reply
through remodeling and formation of new bones
Amoako Reply
please what is it
what is blood pressure
what is blood pressure reading
sketch and label blood vessels
veins is........
draw the male reproductive system
Jeremaih Reply
hello am new here
how life
Explain how different foods can affect metabolism
Abraham Reply
what is Endocrine system?
Islam Reply
which secrete hormones and other products direct into the blood
Cell is basic, structural and functional unit of life
Kabuja Reply
The cell is the structural and functional unit of all living organisms, and is sometimes called the "building block of life." Some organisms, such as bacteria, are unicellular, consisting of a single cell.
hi am new here..wish to join you in this conversation
welcome Rachel am Brianito
can some one help
what is the basic function of the lymphatic system
The other main function is that of defense in the immune system. Lymph is very similar to blood plasma: it contains lymphocytes. It also contains waste products and cellular debris together with bacteria and proteins. Associated organs composed of lymphoid tissue are the sites of lymphocyte producti
the function of lymphatic system are 1fluid balance 2 lipid absorption and 3 defence
destroyed microognism
lymphatic systems main function is to transport lymph
may i know the meaning of infestation of parasite?
Which of the following accurately describe external respirations
Robin Reply
different between anatomy and physiology
Samwel Reply
anatomy is the study of STRUCTURE of the body while physiology is the study of the function of the part of the body
Anatomy deals with the structure and parts of the body while physiology is the function of the the body parts
not understanding what is a cell
Kesa Reply
its the fundamental unit of life or its the primary step in which two or more cell combine to form a tissue .
Is the smallest structural and functional unit of life
cell is the basic you unit of life
what is osteomalàcia
Ellen Reply
what is hydroxyapitate
Hydroxyapatite, also called hydroxylapatite, is a naturally occurring mineral form of calcium apatite with the formula Ca₅(PO₄)₃, but it is usually written Ca₁₀(PO₄)₆(OH)₂ to denote that the crystal unit cell comprises two entities. Hydroxyapatite is the hydroxyl endmember of the complex apatite gro
what's the best way to memorize the terms and what it does
osteomalacia is where inorganic or mineral which is calcium and phosphorus are removed from a bone....this will make the bone become flexible n in children is called ricket
wat work does anatomy do in the hospital and can they get work fast after finishing
SULE Reply
what is the meaning of suture?
praba Reply
it is a protective layer of brain
it is a kind of non movable joint present between skull bones
suture is an example of fibrous joint and is synatrosys(is not movable)
a junction between the sclerites of an imsect's body

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?