22.11 More applications of magnetism  (Page 4/12)

 Page 4 / 12

In both of these techniques, the sensors do not touch the body. MCG can be used in fetal studies, and is probably more sensitive than echocardiography. MCG also looks at the heart’s electrical activity whose voltage output is too small to be recorded by surface electrodes as in EKG. It has the potential of being a rapid scan for early diagnosis of cardiac ischemia (obstruction of blood flow to the heart) or problems with the fetus.

MEG can be used to identify abnormal electrical discharges in the brain that produce weak magnetic signals. Therefore, it looks at brain activity, not just brain structure. It has been used for studies of Alzheimer’s disease and epilepsy. Advances in instrumentation to measure very small magnetic fields have allowed these two techniques to be used more in recent years. What is used is a sensor called a SQUID, for superconducting quantum interference device. This operates at liquid helium temperatures and can measure magnetic fields thousands of times smaller than the Earth’s.

Finally, there is a burgeoning market for magnetic cures in which magnets are applied in a variety of ways to the body, from magnetic bracelets to magnetic mattresses. The best that can be said for such practices is that they are apparently harmless, unless the magnets get close to the patient’s computer or magnetic storage disks. Claims are made for a broad spectrum of benefits from cleansing the blood to giving the patient more energy, but clinical studies have not verified these claims, nor is there an identifiable mechanism by which such benefits might occur.

Phet explorations: magnet and compass

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar magnet, and then add the Earth and find the surprising answer! Vary the magnet's strength, and see how things change both inside and outside. Use the field meter to measure how the magnetic field changes.

Section summary

• Crossed (perpendicular) electric and magnetic fields act as a velocity filter, giving equal and opposite forces on any charge with velocity perpendicular to the fields and of magnitude
$v=\frac{E}{B}\text{.}$

Conceptual questions

Measurements of the weak and fluctuating magnetic fields associated with brain activity are called magnetoencephalograms (MEGs). Do the brain’s magnetic fields imply coordinated or uncoordinated nerve impulses? Explain.

Discuss the possibility that a Hall voltage would be generated on the moving heart of a patient during MRI imaging. Also discuss the same effect on the wires of a pacemaker. (The fact that patients with pacemakers are not given MRIs is significant.)

A patient in an MRI unit turns his head quickly to one side and experiences momentary dizziness and a strange taste in his mouth. Discuss the possible causes.

You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation could you make to determine the type? (Ignore the Earth’s magnetic field.)

what is temperature
temperature is the measure of degree of hotness or coldness of a body. measured in kelvin
a characteristic which tells hotness or coldness of a body
babar
Average kinetic energy of an object
Kym
average kinetic energy of the particles in an object
Kym
A measure of the quantity of heat contained in an object which arises from the average kinetic energy of the constituent particles of that object. It can be measured using thermometers. It has a unit of kelvin in the thermodynamic scale and degree Celsius in the Celsius scale.
ibrahim
Mass of air bubble in material medium is negative. why?
a car move 6m. what is the acceleration?
depends how long
Peter
What is the simplest explanation on the difference of principle, law and a theory
how did the value of gravitational constant came give me the explanation
how did the value of gravitational constant 6.67×10°-11Nm2kg-2
Varun
A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor.
9.8m/s?
Sqrt(2*1.5m*9.81m/s^2)
Richard
0.5m* mate.
0.05 I meant.
Guess your solution is correct considering the ball fall from 1.5m height initially.
Sqrt(2*1.5m*9.81m/s^2)
Deepak
How can we compare different combinations of capacitors?
find the dimension of acceleration if it's unit is ms-2
lt^-2
b=-2 ,a =1
M^0 L^1T^-2
Sneha
what is botany
Masha
it is a branch of science which deal with the study of plants animals and environment
Varun
what is work
a boy moving with an initial velocity of 2m\s and finally canes to rest with a velocity of 3m\s square at times 10se calculate it acceleration
Sunday
.
Abdul
6.6 lol 😁😁
Abdul
show ur work
Sunday
Abdul
Abdul
If the boy is coming to rest then how the hell will his final velocity be 3 it'll be zero
Abdul
re-write the question
Nicolas
men i -10 isn't correct.
Stephen
using v=u + at
Stephen
1/10
Happy
ya..1/10 is very correct..
Stephen
hnn
Happy
how did the value 6.67×10°-11Nm2kg2 came tell me please
Varun
Work is the product of force and distance
Kym
physicist
Michael
what is longitudinal wave
A longitudinal wave is wave which moves parallel or along the direction of propagation.
sahil
longitudinal wave in liquid is square root of bulk of modulus by density of liquid
harishree
Is British mathematical units the same as the United States units?(like inches, cm, ext.)
We use SI units: kg, m etc but the US sometimes refer to inches etc as British units even though we no longer use them.
Richard
Thanks, just what I needed to know.
Nina
What is the advantage of a diffraction grating over a double slit in dispersing light into a spectrum?
yes.
Abdul
Yes
Albert
sure
Ajali
yeap
Sani
yesssss
bilal
hello guys
Ibitayo
when you will ask the question
Ana
bichu
is free energy possible with magnets?
joel
no
Mr.
you could construct an aparatus that might have a slightly higher 'energy profit' than energy used, but you would havw to maintain the machine, and most likely keep it in a vacuum, for no air resistance, and cool it, so chances are quite slim.
Mr.
calculate the force, p, required to just make a 6kg object move along the horizontal surface where the coefficient of friction is 0.25
Gbolahan
Albert
if a man travel 7km 30degree east of North then 10km east find the resultant displacement
11km
Dohn
disagree. Displacement is the hypotenuse length of the final position to the starting position. Find x,y components of each leg of journey to determine final position, then use final components to calculate the displacement.
Daniel
1.The giant star Betelgeuse emits radiant energy at a rate of 10exponent4 times greater than our sun, where as it surface temperature is only half (2900k) that of our sun. Estimate the radius of Betelgeuse assuming e=1, the sun's radius is s=7*10exponent8metres
2. A ceramic teapot (e=0.20) and a shiny one (e=0.10), each hold 0.25 l of at 95degrees. A. Estimate the temperature rate of heat loss from each B. Estimate the temperature drop after 30mins for each. Consider only radiation and assume the surrounding at 20degrees
James