<< Chapter < Page Chapter >> Page >
Photo (a) shows a salmon swimming. Photo (b) shows pronghorn antelope running on a plain. Photo (c) shows chimpanzees.
The (a) Chinook salmon mates once and dies. The (b) pronghorn antelope mates during specific times of the year during its reproductive life. Primates, such as humans and (c) chimpanzees, may mate on any day, independent of ovulation. (credit a: modification of work by Roger Tabor, USFWS; credit b: modification of work by Mark Gocke, USDA; credit c: modification of work by “Shiny Things”/Flickr)

Play this interactive PBS evolution-based mating game to learn more about reproductive strategies.

Evolution connection

Energy budgets, reproductive costs, and sexual selection in Drosophila

Research into how animals allocate their energy resources for growth, maintenance, and reproduction has used a variety of experimental animal models. Some of this work has been done using the common fruit fly, Drosophila melanogaster . Studies have shown that not only does reproduction have a cost as far as how long male fruit flies live, but also fruit flies that have already mated several times have limited sperm remaining for reproduction. Fruit flies maximize their last chances at reproduction by selecting optimal mates.

In a 1981 study, male fruit flies were placed in enclosures with either virgin or inseminated females. The males that mated with virgin females had shorter life spans than those in contact with the same number of inseminated females with which they were unable to mate. This effect occurred regardless of how large (indicative of their age) the males were. Thus, males that did not mate lived longer, allowing them more opportunities to find mates in the future.

More recent studies, performed in 2006, show how males select the female with which they will mate and how this is affected by previous matings ( [link] ). Adapted from Phillip G. Byrne and William R. Rice, “Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster, ” Proc Biol Sci. 273, no. 1589 (2006): 917-922, doi: 10.1098/rspb.2005.3372. Males were allowed to select between smaller and larger females. Findings showed that larger females had greater fecundity, producing twice as many offspring per mating as the smaller females did. Males that had previously mated, and thus had lower supplies of sperm, were termed “resource-depleted,” while males that had not mated were termed “non-resource-depleted.” The study showed that although non-resource-depleted males preferentially mated with larger females, this selection of partners was more pronounced in the resource-depleted males. Thus, males with depleted sperm supplies, which were limited in the number of times that they could mate before they replenished their sperm supply, selected larger, more fecund females, thus maximizing their chances for offspring. This study was one of the first to show that the physiological state of the male affected its mating behavior in a way that clearly maximizes its use of limited reproductive resources.

Table compares the change in percentage of large versus small females mated for sperm-depleted males versus non-depleted males. Non-depleted males preferred large over small females by 8 percent. Sperm depleted males had a greater preference for large females: 15 percent. Error for both measurements was plus or minus 5 percent.
Male fruit flies that had previously mated (sperm-depleted) picked larger, more fecund females more often than those that had not mated (non-sperm-depleted). This change in behavior causes an increase in the efficiency of a limited reproductive resource: sperm.

These studies demonstrate two ways in which the energy budget is a factor in reproduction. First, energy expended on mating may reduce an animal’s lifespan, but by this time they have already reproduced, so in the context of natural selection this early death is not of much evolutionary importance. Second, when resources such as sperm (and the energy needed to replenish it) are low, an organism’s behavior can change to give them the best chance of passing their genes on to the next generation. These changes in behavior, so important to evolution, are studied in a discipline known as behavioral biology, or ethology, at the interface between population biology and psychology.

Section summary

All species have evolved a pattern of living, called a life history strategy, in which they partition energy for growth, maintenance, and reproduction. These patterns evolve through natural selection; they allow species to adapt to their environment to obtain the resources they need to successfully reproduce. There is an inverse relationship between fecundity and parental care. A species may reproduce early in life to ensure surviving to a reproductive age or reproduce later in life to become larger and healthier and better able to give parental care. A species may reproduce once (semelparity) or many times (iteroparity) in its life.

Questions & Answers

what is used to determine phylogeny?
Israel Reply
which condition is the basis for a species to be reproductively isolated from other members?
Israel Reply
Why do scientists consider vestigial structures evidence for evolution?
Israel
8.Which statement about analogies is correct?
Israel
What is true about organisms that are a part of the same clade?
Israel
Why is it so important for scientists to distinguish between homologous and analogous characteristics before building phylogenetic trees?
Israel
(CH2O)n is the stoichiometric formula of
Marcellus Reply
what are nucleotide
Anastijjaninaiya Reply
Methane,ammonia,water and sugar are dissolved to form nuceotide
Me
Introduction To Biology
Tanveer Reply
can ringworm be caused by bacterium
fred Reply
Nope
ejikeme
Branches of biology
Tanveer
no it does not occurs by bacterium
gopal
what is a brick?
Istifanus Reply
what is gene in biology?
yousaf Reply
it is a heredity unit
Me
what is DNA
yousaf Reply
carrier of genetic information
missy
deoxyribonucleic acid
gopal
it contains genetic information and brings it to one generation to other
gopal
it is of two Types circular DNA and linear DNA
gopal
plasmids are the type of small circular DNA which lies outside the genomic DNA
gopal
And what makes a virus to be difficult to destroy
Mosongo
what observation is made when dry seeds and soaked seeds are put in a vacuum flask
Robin Reply
there is respiration from the soak seeds which shows on the walls of the vacuum flask
Israel
what's mammals ?
Istifanus Reply
mammals are vertebrates ,any member group of vertebrates animals in which the young are nourished with milk from special mammary glands of the mother.
yousaf
what are actin and myosin
Praveen Reply
they are muscle filaments
Israel
they make up the microfibrils of the muscle ,relaxing and contracting to cause movement
Israel
Please did anybody know the questions that will come out in the coming practical?
Oladimeji
Why it is importantthat there are different types of protein in plasma membraine for the transport materials into and out of a cell?
Louellie Reply
the nerve cell
Mustapha Reply
differences between Homo sapiens and other primates
Aphiwe Reply
Why is albinism a recessive trait
Bright
Tyrosinase gene are make albinism to recessive trait
vinod
And what are the Tyrosinase genes
Bright

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask