<< Chapter < Page Chapter >> Page >

But there are limits to Bohr’s theory. It cannot be applied to multielectron atoms, even one as simple as a two-electron helium atom. Bohr’s model is what we call semiclassical . The orbits are quantized (nonclassical) but are assumed to be simple circular paths (classical). As quantum mechanics was developed, it became clear that there are no well-defined orbits; rather, there are clouds of probability. Bohr’s theory also did not explain that some spectral lines are doublets (split into two) when examined closely. We shall examine many of these aspects of quantum mechanics in more detail, but it should be kept in mind that Bohr did not fail. Rather, he made very important steps along the path to greater knowledge and laid the foundation for all of atomic physics that has since evolved.

Phet explorations: models of the hydrogen atom

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Models of the Hydrogen Atom

Section summary

  • The planetary model of the atom pictures electrons orbiting the nucleus in the way that planets orbit the sun. Bohr used the planetary model to develop the first reasonable theory of hydrogen, the simplest atom. Atomic and molecular spectra are quantized, with hydrogen spectrum wavelengths given by the formula
    1 λ = R 1 n f 2 1 n i 2 , size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}
    where λ size 12{λ} {} is the wavelength of the emitted EM radiation and R size 12{R} {} is the Rydberg constant, which has the value
    R = 1.097 × 10 7 m −1 .
  • The constants n i size 12{n rSub { size 8{i} } } {} and n f size 12{n rSub { size 8{f} } } {} are positive integers, and n i must be greater than n f size 12{n rSub { size 8{f} } } {} .
  • Bohr correctly proposed that the energy and radii of the orbits of electrons in atoms are quantized, with energy for transitions between orbits given by
    Δ E = hf = E i E f , size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}
    where Δ E size 12{ΔE} {} is the change in energy between the initial and final orbits and hf size 12{ ital "hf"} {} is the energy of an absorbed or emitted photon. It is useful to plot orbital energies on a vertical graph called an energy-level diagram.
  • Bohr proposed that the allowed orbits are circular and must have quantized orbital angular momentum given by
    L = m e vr n = n h 2 π n = 1, 2, 3 … ,
    where L size 12{L} {} is the angular momentum, r n size 12{r rSub { size 8{n} } } {} is the radius of the n th size 12{n"th"} {} orbit, and h size 12{h} {} is Planck’s constant. For all one-electron (hydrogen-like) atoms, the radius of an orbit is given by
    r n = n 2 Z a B (allowed orbits n = 1, 2, 3, ...),
    Z size 12{Z} {} is the atomic number of an element (the number of electrons is has when neutral) and a B size 12{a rSub { size 8{B} } } {} is defined to be the Bohr radius, which is
    a B = h 2 4 π 2 m e kq e 2 = 0.529 × 10 10 m . size 12{a rSub { size 8{B} } = { {h rSup { size 8{2} } } over {4π rSup { size 8{2} } m rSub { size 8{e} } ital "kq" rSub { size 8{e} } rSup { size 8{2} } } } =0 "." "529" times "10" rSup { size 8{ - "10"} } " m" "." } {}
  • Furthermore, the energies of hydrogen-like atoms are given by
    E n = Z 2 n 2 E 0 n = 1, 2, 3 ... , size 12{ left (n=1, 2, 3 "." "." "." right )} {}
    where E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy and is given by
    E 0 = 2 q e 4 m e k 2 h 2 = 13.6 eV. size 12{E rSub { size 8{0} } = { {2π rSup { size 8{2} } q rSub { size 8{e} } rSup { size 8{4} } m rSub { size 8{e} } k rSup { size 8{2} } } over {h rSup { size 8{2} } } } ="13" "." 6" eV"} {}
    Thus, for hydrogen,
    E n = 13.6 eV n 2 size 12{E rSub { size 8{n} } = - { {"13" "." 6" eV"} over {n rSup { size 8{2} } } } } {} n = 1, 2, 3 ... . size 12{ left (n=1, 2, 3 "." "." "." right ) "." } {}
  • The Bohr Theory gives accurate values for the energy levels in hydrogen-like atoms, but it has been improved upon in several respects.

Conceptual questions

How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.

Got questions? Get instant answers now!

Questions & Answers

In Inelastic collision cunculate the vilocity
Anshu Reply
explain how a body becomes electrically charged based on the presence of charged particles
Kym Reply
definitely by induction
please why does a needle sinks in water
what are the calculations of Newton's third law of motiow
Murtala Reply
what is dark matter
apex Reply
(in some cosmological theories) non-luminous material which is postulated to exist in space and which could take either of two forms: weakly interacting particles ( cold dark matter ) or high-energy randomly moving particles created soon after the Big Bang ( hot dark matter ).
if the mass of a trolley is 0.1kg. calculate the weight of plasticine that is needed to compensate friction. (take g=10m/s and u=0.2)
Declan Reply
what is a galaxy
Maduka Reply
what isflow rate of volume
Abcd Reply
flow rate is the volume of fluid which passes per unit time;
flow rate or discharge represnts the flow passing in unit volume per unit time
When two charges q1 and q2 are 6 and 5 coulomb what is ratio of force
Mian Reply
When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?
bimo Reply
is that the answer
why is it proportional
nehemiah Reply
i don't know
what are the relationship between distance and displacement
Usman Reply
They are interchangeable.
Distance is scalar, displacement is vector because it must involve a direction as well as a magnitude. distance is the measurement of where you are and where you were displacement is a measurement of the change in position
Thanks a lot
I'm beginner in physics so I can't reason why v=u+at change to v2=u2+2as and vice versa
what is kinematics
kinematics is study of motion without considering the causes of the motion
The study of motion without considering the cause 0f it
why electrons close to the nucleus have less energy and why do electrons far from the nucleus have more energy
thank you frds
plz what is the third law of thermodynamics
Chidera Reply
third law of thermodynamics states that at 0k the particles will collalse its also known as death of universe it was framed at that time when it waa nt posible to reach 0k but it was proved wrong
I have not try that experiment but I think it will magnet....
Rev Reply
Hey Rev. it will
I do think so, it will
yes it will
If a magnet is in a pool of water, would it be able to have a magnetic field?.
Stella Reply
yes Stella it would
formula for electric current
Chizzy Reply
what is that about pleace
what are you given?
what is current
Current is the flow of electric charge per unit time.
What are semi conductors
materials that allows charge to flow at varying conditions, temperature for instance.
these are materials which have electrical conductivity greater than the insulators but less than metal, in these materials energy band Gap is very narrow as compared to insulators
materials that allows charge to flow at varying conditions, temperature for instance.
wao so awesome
At what point in the oscillation of beam will a body leave it?
what is gravitational force
Practice Key Terms 7

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?