# 6.1 Reading and writing decimals

 Page 1 / 2
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses how to read and write decimals. By the end of the module students should understand the meaning of digits occurring to the right of the ones position, be familiar with the meaning of decimal fractions and be able to read and write a decimal fraction.

## Section overview

• Digits to the Right of the Ones Position
• Decimal Fractions
• Writing Decimal Fractions

## Digits to the right of the ones position

We began our study of arithmetic ( [link] ) by noting that our number system is called a positional number system with base ten. We also noted that each position has a particular value. We observed that each position has ten times the value of the position to its right.

This means that each position has $\frac{1}{10}$ the value of the position to its left.

Thus, a digit written to the right of the units position must have a value of $\frac{1}{\text{10}}$ of 1. Recalling that the word "of" translates to multiplication $\left(\cdot \right)$ , we can see that the value of the first position to the right of the units digit is $\frac{1}{\text{10}}$ of 1, or

$\frac{1}{\text{10}}\cdot 1=\frac{1}{\text{10}}$

The value of the second position to the right of the units digit is $\frac{1}{\text{10}}$ of $\frac{1}{\text{10}}$ , or

$\frac{1}{\text{10}}\cdot \frac{1}{\text{10}}=\frac{1}{{\text{10}}^{2}}=\frac{1}{\text{100}}$

The value of the third position to the right of the units digit is $\frac{1}{\text{10}}$ of $\frac{1}{\text{100}}$ , or

$\frac{1}{\text{10}}\cdot \frac{1}{\text{100}}=\frac{1}{{\text{10}}^{3}}=\frac{1}{\text{1000}}$

This pattern continues.

We can now see that if we were to write digits in positions to the right of the units positions, those positions have values that are fractions. Not only do the positions have fractional values, but the fractional values are all powers of 10 $\left(\text{10},{\text{10}}^{2},{\text{10}}^{3},\dots \right)$ .

## Decimal point, decimal

If we are to write numbers with digits appearing to the right of the units digit, we must have a way of denoting where the whole number part ends and the fractional part begins. Mathematicians denote the separation point of the units digit and the tenths digit by writing a decimal point . The word decimal comes from the Latin prefix "deci" which means ten, and we use it because we use a base ten number system. Numbers written in this form are called decimal fractions , or more simply, decimals .

Notice that decimal numbers have the suffix "th."

## Decimal fraction

A decimal fraction is a fraction in which the denominator is a power of 10.

The following numbers are examples of decimals.

1. 42.6

The 6 is in the tenths position.

$\text{42}\text{.}6=\text{42}\frac{6}{\text{10}}$

2. 9.8014

The 8 is in the tenths position.
The 0 is in the hundredths position.
The 1 is in the thousandths position.
The 4 is in the ten thousandths position.

$9\text{.}\text{8014}=9\frac{\text{8014}}{\text{10},\text{000}}$

3. 0.93

The 9 is in the tenths position.
The 3 is in the hundredths position.

$0\text{.}\text{93}=\frac{\text{93}}{\text{100}}$

Quite often a zero is inserted in front of a decimal point (in the units position) of a decimal fraction that has a value less than one. This zero helps keep us from overlooking the decimal point.
4. 0.7

The 7 is in the tenths position.

$0\text{.}7=\frac{7}{\text{10}}$

We can insert zeros to the right of the right-most digit in a decimal fraction without changing the value of the number.
$\frac{7}{\text{10}}=0\text{.}7=0\text{.}\text{70}=\frac{\text{70}}{\text{100}}=\frac{7}{\text{10}}$

1. Read the whole number part as usual. (If the whole number is less than 1, omit steps 1 and 2.)
2. Read the decimal point as the word "and."
3. Read the number to the right of the decimal point as if it were a whole number.
4. Say the name of the position of the last digit.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min