<< Chapter < Page Chapter >> Page >
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses how to read and write decimals. By the end of the module students should understand the meaning of digits occurring to the right of the ones position, be familiar with the meaning of decimal fractions and be able to read and write a decimal fraction.

Section overview

  • Digits to the Right of the Ones Position
  • Decimal Fractions
  • Reading Decimal Fractions
  • Writing Decimal Fractions

Digits to the right of the ones position

We began our study of arithmetic ( [link] ) by noting that our number system is called a positional number system with base ten. We also noted that each position has a particular value. We observed that each position has ten times the value of the position to its right.

10 times 100,000 is the millions position. 10 times 10,000 is the hundred thousands position. 10 times 1,000 is the ten thousands position. 10 times 100 is the thousands position. 10 times 10 is the hundreds position. 10 times 1 is the tens position. 1 is the ones position.

This means that each position has 1 10 the value of the position to its left.

1,000,000 is the millions position. One tenth of 1,000,000 is the hundred thousands. One tenths of 100,000 is the ten thousands. One tenth of 10,000 is the thousands position. One tenth of 1,000 is the thousands. One tenth of 100 is the tens position. One tenth of 10 is the ones position.

Thus, a digit written to the right of the units position must have a value of 1 10 size 12{ { {1} over {"10"} } } {} of 1. Recalling that the word "of" translates to multiplication , we can see that the value of the first position to the right of the units digit is 1 10 size 12{ { {1} over {"10"} } } {} of 1, or

1 10 1 = 1 10 size 12{ { {1} over {"10"} } cdot 1= { {1} over {"10"} } } {}

The value of the second position to the right of the units digit is 1 10 size 12{ { {1} over {"10"} } } {} of 1 10 size 12{ { {1} over {"10"} } } {} , or

1 10 1 10 = 1 10 2 = 1 100 size 12{ { {1} over {"10"} } cdot { {1} over {"10"} } = { {1} over {"10" rSup { size 8{2} } } } = { {1} over {"100"} } } {}

The value of the third position to the right of the units digit is 1 10 size 12{ { {1} over {"10"} } } {} of 1 100 size 12{ { {1} over {"100"} } } {} , or

1 10 1 100 = 1 10 3 = 1 1000 size 12{ { {1} over {"10"} } cdot { {1} over {"10"} } = { {1} over {"10" rSup { size 8{3} } } } = { {1} over {"1000"} } } {}

This pattern continues.

We can now see that if we were to write digits in positions to the right of the units positions, those positions have values that are fractions. Not only do the positions have fractional values, but the fractional values are all powers of 10 10 , 10 2 , 10 3 , size 12{ left ("10","10" rSup { size 8{2} } ,"10" rSup { size 8{3} } , dotslow right )} {} .

Decimal fractions

Decimal point, decimal

If we are to write numbers with digits appearing to the right of the units digit, we must have a way of denoting where the whole number part ends and the fractional part begins. Mathematicians denote the separation point of the units digit and the tenths digit by writing a decimal point . The word decimal comes from the Latin prefix "deci" which means ten, and we use it because we use a base ten number system. Numbers written in this form are called decimal fractions , or more simply, decimals .

millions, hundred thousands, ten thousands, thousands, hundreds, tens and ones are to the left of the decimal point. tenths, hundredths, thousandths, ten thousandths, hundred thousandths, and millionths are to the right of the decimal point.

Notice that decimal numbers have the suffix "th."

Decimal fraction

A decimal fraction is a fraction in which the denominator is a power of 10.

The following numbers are examples of decimals.

  1. 42.6

    The 6 is in the tenths position.

    42 . 6 = 42 6 10 size 12{"42" "." 6="42" { {6} over {"10"} } } {}

  2. 9.8014

    The 8 is in the tenths position.
    The 0 is in the hundredths position.
    The 1 is in the thousandths position.
    The 4 is in the ten thousandths position.

    9 . 8014 = 9 8014 10 , 000 size 12{9 "." "8014"=9 { {"8014"} over {"10","000"} } } {}

  3. 0.93

    The 9 is in the tenths position.
    The 3 is in the hundredths position.

    0 . 93 = 93 100 size 12{0 "." "93"= { {"93"} over {"100"} } } {}

    Quite often a zero is inserted in front of a decimal point (in the units position) of a decimal fraction that has a value less than one. This zero helps keep us from overlooking the decimal point.
  4. 0.7

    The 7 is in the tenths position.

    0 . 7 = 7 10 size 12{0 "." 7= { {7} over {"10"} } } {}

    We can insert zeros to the right of the right-most digit in a decimal fraction without changing the value of the number.
    7 10 = 0 . 7 = 0 . 70 = 70 100 = 7 10 size 12{ { {7} over {"10"} } =0 "." 7=0 "." "70"= { {"70"} over {"100"} } = { {7} over {"10"} } } {}

Reading decimal fractions

Reading a decimal fraction

To read a decimal fraction,
  1. Read the whole number part as usual. (If the whole number is less than 1, omit steps 1 and 2.)
  2. Read the decimal point as the word "and."
  3. Read the number to the right of the decimal point as if it were a whole number.
  4. Say the name of the position of the last digit.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
7hours 36 min - 4hours 50 min
Tanis Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Fundamentals of mathematics. OpenStax CNX. Aug 18, 2010 Download for free at http://cnx.org/content/col10615/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of mathematics' conversation and receive update notifications?