# 2.3 Division of whole numbers  (Page 2/3)

 Page 2 / 3
Not all divisions end in zero. We will examine such divisions in a subsequent subsection.

## Practice set a

Perform the following divisions.

$\text{126}÷7$

18

$\text{324}÷4$

81

$2,\text{559}÷3$

853

$5,\text{645}÷5$

1,129

$\text{757},\text{125}÷9$

84,125

## Division with a multiple digit divisor

The process of division also works when the divisor consists of two or more digits. We now make educated guesses using the first digit of the divisor and one or two digits of the dividend.

## Sample set b

Find $2,\text{232}÷\text{36}$ .

$\begin{array}{c}\hfill 36\overline{)2232}\end{array}$

Use the first digit of the divisor and the first two digits of the dividend to make the educated guess.

3 goes into 22 at most 7 times.

Try 7: $7×\text{36}=\text{252}$ which is greater than 223. Reduce the estimate.

Try 6: $6×\text{36}=\text{216}$ which is less than 223.

$\begin{array}{cc}\text{Multiply:}\hfill & \text{6 × 36 = 216. Write 216 below 223.}\hfill \\ \text{Subtract:}\hfill & \text{223 - 216 = 7. Bring down the 2.}\hfill \end{array}$

Divide 3 into 7 to estimate the number of times 36 goes into 72. The 3 goes into 7 at most 2 times.

Try 2: $2×\text{36}=\text{72}$ .

Check :

Thus, $2,\text{232}÷\text{36}=\text{62}$ .

Find $2,\text{417},\text{228}÷\text{802}$ .

$\begin{array}{c}\hfill 802\overline{)2417228}\end{array}$

First, the educated guess: $\text{24}÷8=3$ . Then $3×\text{802}=\text{2406}$ , which is less than 2417. Use 3 as the guess. Since $3×\text{802}=\text{2406}$ , and 2406 has four digits, place the 3 above the fourth digit of the dividend.

Subtract: 2417 - 2406 = 11.
Bring down the 2.

The divisor 802 goes into 112 at most 0 times. Use 0.

$\begin{array}{cc}\text{Multiply:}\hfill & \text{0 × 802 = 0.}\hfill \\ \text{Subtract:}\hfill & \text{112 - 0 = 112.}\hfill \\ \text{Bring down the 2.}\end{array}$

The 8 goes into 11 at most 1 time, and $1×\text{802}=\text{802}$ , which is less than 1122. Try 1.

Subtract $1122-802=320$
Bring down the 8.

8 goes into 32 at most 4 times.

$4×\text{802}=\text{3208}$ .

Use 4.

Check:

Thus, $2,\text{417},\text{228}÷\text{802}=3,\text{014}$ .

## Practice set b

Perform the following divisions.

$1,\text{376}÷\text{32}$

43

$6,\text{160}÷\text{55}$

112

$\text{18},\text{605}÷\text{61}$

305

$\text{144},\text{768}÷\text{48}$

3,016

## Division with a remainder

We might wonder how many times 4 is contained in 10. Repeated subtraction yields

Since the remainder is less than 4, we stop the subtraction. Thus, 4 goes into 10 two times with 2 remaining. We can write this as a division as follows.

$\begin{array}{cc}\text{Divide:}\hfill & \text{4 goes into 10 at most 2 times.}\hfill \\ \text{Multiply:}\hfill & \text{2 × 4 = 8. Write 8 below 0.}\hfill \\ \text{Subtract:}\hfill & \text{10 - 8 = 2.}\hfill \end{array}$

Since 4 does not divide into 2 (the remainder is less than the divisor) and there are no digits to bring down to continue the process, we are done. We write

or $\mathrm{10}÷4=\underset{\text{2 with remainder 2}}{\underbrace{2R2}}$

## Sample set c

Find $\text{85}÷3$ .

$\left\{\begin{array}{cc}\text{Divide:}\hfill & \text{3 goes into 8 at most 2 times.}\hfill \\ \text{Multiply:}\hfill & \text{2 × 3 = 6. Write 6 below 8.}\hfill \\ \text{Subtract:}\hfill & \text{8 - 6 = 2. Bring down the 5.}\hfill \end{array}\right)$ $\left\{\begin{array}{cc}\text{Divide:}\hfill & \text{3 goes into 25 at most 8 times.}\hfill \\ \text{Multiply:}\hfill & \text{3 × 8 = 24. Write 24 below 25.}\hfill \\ \text{Subtract:}\hfill & \text{25 - 24 = 1.}\hfill \end{array}\right)$

There are no more digits to bring down to continue the process. We are done. One is the remainder.

Check: Multiply 28 and 3, then add 1.

Thus, $\text{85}÷3=\text{28}\mathrm{R1}$ .

Find $\text{726}÷\text{23}$ .

Check: Multiply 31 by 23, then add 13.

Thus, $\text{726}÷\text{23}=\text{31}R\text{13}$ .

## Practice set c

Perform the following divisions.

$\text{75}÷4$

18 R3

$\text{346}÷8$

43 R2

$\text{489}÷\text{21}$

23 R6

$5,\text{016}÷\text{82}$

61 R14

$\text{41},\text{196}÷\text{67}$

614 R58

## Calculators

The calculator can be useful for finding quotients with single and multiple digit divisors. If, however, the division should result in a remainder, the calculator is unable to provide us with the particular value of the remainder. Also, some calculators (most nonscientific) are unable to perform divisions in which one of the numbers has more than eight digits.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min