<< Chapter < Page | Chapter >> Page > |
The solution is
$-6.$ Square both sides.
${x}^{2}={\left(-6\right)}^{2}$
${x}^{2}=36$
This equation has two solutions, $-6$ and $+6.$ The $+6$ is an extraneous solution since it does not check in the original equation: $+6\ne -6.$
Solve each square root equation.
$$\begin{array}{cccccc}\hfill & \hfill \sqrt{x}& =\hfill & 8.\hfill & \hfill & \begin{array}{l}\text{The radical is isolated Square both sides}\text{.}\hfill \end{array}\hfill \\ \hfill & {\left(\sqrt{x}\right)}^{2}\hfill & =\hfill & {8}^{2}\hfill & \hfill & \hfill \\ \hfill & \hfill x& =\hfill & 64\hfill & \hfill & \text{Check this potential solution}\text{.}\hfill \\ Check:\hfill & \hfill \sqrt{64}& =\hfill & 8\hfill & \hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill 8& =\hfill & 8\hfill & \hfill & \text{Yes,\hspace{0.17em}this\hspace{0.17em}is\hspace{0.17em}correct.}\hfill \\ \text{64 is the solution}\text{.}\hfill & \hfill & \hfill & \hfill & \hfill & \hfill \end{array}$$
$$\begin{array}{cccccc}\hfill & \hfill \sqrt{y-3}& =\hfill & 4.\hfill & \hfill & \begin{array}{l}\text{The radical is isolated. Square both sides}\text{.}\hfill \end{array}\hfill \\ \hfill & \hfill y-3& =\hfill & 16\hfill & \hfill & \text{Solve this nonradical equation}\text{.}\hfill \\ \hfill & \hfill y& =\hfill & 19\hfill & \hfill & \text{Check this potential solution}\text{.}\hfill \\ Check:\hfill & \sqrt{19-3}\hfill & =\hfill & \sqrt{16}\hfill & \hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill \sqrt{16}& =\hfill & 4\hfill & \hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill 4& =\hfill & 4\hfill & \hfill & \text{Yes,\hspace{0.17em}this\hspace{0.17em}is\hspace{0.17em}correct.}\hfill \\ \text{19 is the solution}\text{.}\hfill & \hfill & \hfill & \hfill & \hfill & \hfill \end{array}$$
$$\begin{array}{ccccccc}\hfill & \hfill & \hfill \sqrt{2m+3}-\sqrt{m-8}& =\hfill & 0.\hfill & \hfill & \text{Isolate either radical}\text{.}\hfill \\ \hfill & \hfill & \hfill \sqrt{2m+3}& =\hfill & \sqrt{m-8}\hfill & \hfill & \text{Square both sides}\text{.}\hfill \\ \hfill & \hfill & \hfill 2m+3& =\hfill & m-8\hfill & \hfill & \text{Solve this nonradical equation}\text{.}\hfill \\ \hfill & \hfill & \hfill m& =\hfill & -11\hfill & \hfill & \text{Check this potential solution}\text{.}\hfill \\ Check:\hfill & \hfill & \hfill \sqrt{2\left(-11\right)+3}-\sqrt{\left(-11\right)-8}& =\hfill & 0\hfill & \hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill & \hfill \sqrt{-22+3}-\sqrt{-19}& =\hfill & 0\hfill & \hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \end{array}$$
$$\text{Since\hspace{0.17em}}\sqrt{-19}\text{\hspace{0.17em}is not a real number, the potential solution of\hspace{0.17em}}m=-11\text{\hspace{0.17em}does not check}\text{. This equation has no real solution}\text{.}$$
$$\begin{array}{ccc}\sqrt{4x-5}=-6.& & \text{By\hspace{0.17em}inspection,\hspace{0.17em}this\hspace{0.17em}equation\hspace{0.17em}has\hspace{0.17em}no\hspace{0.17em}real\hspace{0.17em}solution}\text{.}\end{array}$$
The symbol,
$\sqrt{\begin{array}{c}\\ \end{array}}$ , signifies the
positive square root and not the negative square root.
Solve each square root equation.
$\sqrt{y}=14$
$y=196$
$\sqrt{a-7}=5$
$a=32$
$\sqrt{3a+8}-\sqrt{2a+5}=0$
$a=-3$ is extraneous, no real solution
$\sqrt{m-4}=-11$
no real solution
For the following problems, solve the square root equations.
$\sqrt{x}=5$
$x=25$
$\sqrt{y}=7$
$\sqrt{a}=10$
$a=100$
$\sqrt{c}=12$
$\sqrt{x}=-3$
no solution
$\sqrt{y}=-6$
$\sqrt{x}=0$
$x=0$
$\sqrt{x}=1$
$\sqrt{x+3}=3$
$x=6$
$\sqrt{y-5}=5$
$\sqrt{a+2}=6$
$a=34$
$\sqrt{y+7}=9$
$\sqrt{y-4}-4=0$
$y=20$
$\sqrt{x-10}-10=0$
$\sqrt{x-16}=0$
$x=16$
$\sqrt{y-25}=0$
$\sqrt{6m-4}=\sqrt{5m-1}$
$m=3$
$\sqrt{5x+6}=\sqrt{3x+7}$
$\sqrt{7a+6}=\sqrt{3a-18}$
no solution
$\sqrt{4x+3}=\sqrt{x-9}$
$\sqrt{10a-7}-\sqrt{2a+9}=0$
$a=2$
$\sqrt{12k-5}-\sqrt{9k+10}=0$
$\sqrt{x-6}-\sqrt{3x-8}=0$
no solution
$\sqrt{4a-5}-\sqrt{7a-20}=0$
$\sqrt{2m-6}=\sqrt{m-2}$
$m=4$
$\sqrt{6r-11}=\sqrt{5r+3}$
$\sqrt{3x+1}=\sqrt{2x-6}$
no solution
$\sqrt{x-7}-\sqrt{5x+1}=0$
$\sqrt{2a+9}-\sqrt{a-4}=0$
no solution
At a certain electronics company, the daily output
$Q$ is related to the number of people
$A$ on the assembly line by
$Q=400+10\sqrt{A+125}.$
(a) Determine the daily output if there are 44 people on the assembly line.
(b) Determine how many people are needed on the assembly line if the daily output is to be 520.
At a store, the daily number of sales
$S$ is approximately related to the number of employees
$E$ by
$S=100+15\sqrt{E+6}$
(a) Determine the approximate number of sales if there are 19 employees.
(b) Determine the number of employees the store would need to produce 310 sales.
$\left(a\right)S=175;\text{\hspace{0.17em}}\left(b\right)E=190$
The resonance frequency
$f$ in an electronic circuit containing inductance
$L$ and capacitance
$C$ in series is given by
$f=\frac{1}{2\pi \sqrt{LC}}$
(a) Determine the resonance frequency in an electronic circuit if the inductance is 4 and the capacitance is
$0.0001$ . Use
$\pi =\mathrm{3.14.}$
(b) Determine the inductance in an electric circuit if the resonance frequency is
$7.12$ and the capacitance is
$0.0001$ . Use
$\pi =\mathrm{3.14.}$
If two magnetic poles of strength
$m$ and
${m}^{\text{'}}$ units are at a distance
$r$ centimeters (cm) apart, the force
$F$ of repulsion in air between them is given by
$F=\frac{m{m}^{\text{'}}}{{r}^{2}}$
(a) Determine the force of repulsion if two magnetic poles of strengths 20 and 40 units are 5 cm apart in air.
(b) Determine how far apart are two magnetic poles of strengths 30 and 40 units if the force of repulsion in air between them is
$0.0001$ .
$\left(a\right)F=32\text{\hspace{0.17em}}\left(b\right)r=8\text{cm}$
The velocity
$V$ in feet per second of outflow of a liquid from an orifice is given by
$V=8\sqrt{h},$ where
$h$ is the height in feet of the liquid above the opening.
(a) Determine the velocity of outflow of a liquid from an orifice that is 9 feet below the top surface of a liquid (
$V$ is in feet/sec).
(b) Determine how high a liquid is above an orifice if the velocity of outflow is 81 feet/second.
The period
$T$ in seconds of a simple pendulum of length
$L$ in feet is given by
$T=2\pi \sqrt{\frac{L}{32}}.$
(a) Determine the period of a simple pendulum that is 2 feet long. Use
$\pi =\mathrm{3.14.}$
(b) Determine the length in feet of a simple pendulum whose period is
$10.8772$ seconds. Use
$\pi =\mathrm{3.14.}$
$\left(a\right)T=1.57\text{\hspace{0.17em}sec\hspace{0.17em}}\left(b\right)L=95.99\text{\hspace{0.17em}cm}$
The kinetic energy
$KE$ in foot pounds of a body of mass
$m$ in slugs moving with a velocity
$v$ in feet/sec is given by
$KE=\frac{1}{2}m{v}^{2}$
(a) Determine the kinetic energy of a 2-slug body moving with a velocity of 4 ft/sec.
(b) Determine the velocity in feet/sec of a 4-slug body if its kinetic energy is 50 foot pounds.
( [link] ) Write $\frac{{x}^{10}{y}^{3}{\left(x+7\right)}^{4}}{{x}^{-2}{y}^{3}{\left(x+7\right)}^{-1}}$ so that only positive exponents appear.
${x}^{12}{\left(x+7\right)}^{5}$
( [link] ) Classify $x+4=x+7$ as an identity, a contradiction, or a conditional equation.
(
[link] ) Supply the missing words. In the coordinate plane, lines with
positive; negative
( [link] ) Simplify $\sqrt{{\left(x+3\right)}^{4}{\left(x-2\right)}^{6}}.$
( [link] ) Simplify $\left(3+\sqrt{5}\right)\left(4-\sqrt{5}\right).$
$7+\sqrt{5}$
Notification Switch
Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?