<< Chapter < Page Chapter >> Page >

    Key modules

  • RMPCNTL (ramp control): this module used by the instantiation of the object rc1, structure for which we can access each variable, controls the acceleration and deceleration rate of the speed command speed_ref .This speed command is passed the input of the RMPCNTL module rc1.target_value. The output of this module is called rc1.setpt_value which represents the frequency of the saw-tooth we want to generate.This frequency information is then passed to the ramp generator module.
  • RAMPGEN (ramp generator): to use this module, we instantiate an object rg1. The input of this module is rg1.rmp_freq . The rotating angle we generate (saw-tooth waveform) is rg1.rmp_out. This angle is then used for the Inverse PARK transformation.
  • IPARK (Inverse Park Transformation): instance ipark1. Computed rotating angle is passed into the ipark1.ang variable. The d and q inputs to the inverse Park transformation control the command magnitude via the variables ipark1.de and ipark1.qe.
  • SVGENDQ (Space Vector Generation): instance svgen_dq1. This module takes the output of the IPARK module and calculates the modulation to be applied on the duty cycle of the three pairs of PWM connected to the three phases inverter bridge (svgen_dq1.Ta, svgen_dq1.Tb and svgen_dq1.Tc).
  • PWMGEN (Pulse Width Modulation Generation driver): this modules is the only one linked to the DSP peripherals. Duty-cycles previously calculated are passed into the DSP PWM registers via the instant pw1. PWMGEN takes care of the DSP PWM initialization (timer set-up, PWM polarity and so on).
  1. Run the PMS_Motor_data M-file. This file initializes the following variables:
%Mechanical system %Electrical partDC_voltage = 200; encoder_resolution = 2000;%PWM freq_max=75e6;%Controller Ts=5e-5;
  1. Open the PMS_Motor_level1 Simulink® model.
Space vector generation model

Vd Testing

  1. Run the model and double-click the “Stator Current” and “Rotor Speed” scopes.
Stator Current
Rotor Speed

Running the pmsm in open loop

The purpose of this step is to simulate open–loop operation with power-stage and motor connected and to check out current sensing and feedback path.

Open Loop

Key Modules Used for this level

In addition to the modules used in the previous section, we now start to build the feedback loop using:

  • ILEG2DCBUSMEAS_VCON (current leg and DC bus measurement): This module initializes the ADC to start automatic conversions of channels selected by the user on timer 1 underflow. ADC conversion results are automatically formatted and stored into dedicated variables.
  • CLARKE (Clarke transform module): This module converts the measured current into CLARKE coordinates in the reference frame (α, β).
  • PARK (Park Transformation): This module converts the (α, β) coordinates into two DC quantities.
  • Open the PMS_Motor_level2 Simulink model.

Vd Testing

Figure 8: Open Loop Model

  1. Run the model and double-click the “Stator Current” and “Rotor Speed” (same as previous section) and “Vd/Vq” scopes.

Ramp GeneratorVq Testing

Figure 9: Current Sensing

  1. Now you may change the values of Vd and Vq, and check how it influences the graphs above.

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, From matlab and simulink to real-time with ti dsp's. OpenStax CNX. Jun 08, 2009 Download for free at http://cnx.org/content/col10713/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'From matlab and simulink to real-time with ti dsp's' conversation and receive update notifications?