<< Chapter < Page Chapter >> Page >

Solution for (a)

  1. Identify the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg size 12{m=9 "." "11" times "10" rSup { size 8{ - "31"} } `"kg"} {}
  2. Identify the unknown. KE rel size 12{"KE" rSub { size 8{"rel"} } } {}
  3. Choose the appropriate equation. KE rel = γ 1 mc 2 size 12{"KE" rSub { size 8{"rel"} } = left (γ - 1 right ) ital "mc" rSup { size 8{2} } } {}
  4. Plug the knowns into the equation.

    First calculate γ size 12{γ} {} . We will carry extra digits because this is an intermediate calculation.

    γ = 1 1 v 2 c 2 = 1 1 ( 0 . 990 c ) 2 c 2 = 1 1 ( 0 . 990 ) 2 = 7 . 0888 alignl { stack { size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } } {} #= { {1} over { sqrt {1 - { { \( 0 "." "990" ital " c" \) rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } {} # - { {1} over { sqrt {1 - \( 0 "." "990" \) rSup { size 8{2} } } } } {} #=7 "." "0888" {} } } {}

    Next, we use this value to calculate the kinetic energy.

    KE rel = ( γ 1 ) mc 2 = ( 7.0888 1 ) ( 9.11 × 10 31 kg ) ( 3.00 × 10 8 m/s ) 2 = 4.99 × 10 –13 J
  5. Convert units.
    KE rel = ( 4.99 × 10 –13 J ) 1 MeV 1.60 × 10 13 J = 3.12 MeV alignl { stack { size 12{"KE" rSub { size 8{"rel"} } = \( 4 "." "99" times "10" rSup { size 8{"-13"} } " J" \) left ( { {"1 MeV"} over {1 "." "60" times "10" rSup { size 8{ - "13"} } " J"} } right )} {} #=3 "." "12"" MeV" {} } } {}

Solution for (b)

  1. List the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg
  2. List the unknown. KE class
  3. Choose the appropriate equation. KE class = 1 2 mv 2
  4. Plug the knowns into the equation.
    KE class = 1 2 mv 2 = 1 2 ( 9.00 × 10 31 kg ) ( 0.990 ) 2 ( 3.00 × 10 8 m/s ) 2 = 4.02 × 10 14 J
  5. Convert units.
    KE class = 4.02 × 10 14 J 1 MeV 1.60 × 10 13 J = 0.251 MeV

Discussion

As might be expected, since the velocity is 99.0% of the speed of light, the classical kinetic energy is significantly off from the correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact, KE rel /KE class = 12 . 4 size 12{"KE" rSub { size 8{"rel"} } "/KE" rSub { size 8{"class"} } ="12" "." 4} {} here. This is some indication of how difficult it is to get a mass moving close to the speed of light. Much more energy is required than predicted classically. Some people interpret this extra energy as going into increasing the mass of the system, but, as discussed in Relativistic Momentum , this cannot be verified unambiguously. What is certain is that ever-increasing amounts of energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is a very small amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can accelerate electrons to over 50 × 10 9 eV = 50,000 MeV size 12{"50" times "10" rSup { size 8{9} } "eV"="50,000"`"MeV"} {} .

Is there any point in getting v size 12{v} {} a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this. The energy that goes into a high-velocity mass can be converted to any other form, including into entirely new masses. (See [link] .) Most of what we know about the substructure of matter and the collection of exotic short-lived particles in nature has been learned this way. Particles are accelerated to extremely relativistic energies and made to collide with other particles, producing totally new species of particles. Patterns in the characteristics of these previously unknown particles hint at a basic substructure for all matter. These particles and some of their characteristics will be covered in Particle Physics .

An aerial view of the Fermi National Accelerator Laboratory. The accelerator has two large, ring shaped structures. There are circular ponds near the rings.
The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that accelerated protons and antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings were built to dissipate waste heat. This accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)

Relativistic energy and momentum

We know classically that kinetic energy and momentum are related to each other, since

KE class = p 2 2 m = ( mv ) 2 2 m = 1 2 mv 2 .

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This produces

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask