<< Chapter < Page Chapter >> Page >

Note that if we don't have the Extremal Clause,  0.5, 1.5, 2.5, ... can be included in N, which is not what we want as the set of natural numbers.

Example 2. Definition of the Set of Nonnegative Even Numbers NE

The set NE is the set that satisfies the following three clauses:

Basis Clause: 0 ∈ NE

Inductive Clause: For any element x in NE, x + 2 is in NE.

Extremal Clause: Nothing is in NE unless it is obtained from the Basis and Inductive Clauses.

Example 3. Definition of the Set of Even Integers EI

The set EI is the set that satisfies the following three clauses:

Basis Clause: 0 ∈ EI

Inductive Clause: For any element x in EI, x + 2, and x - 2 are in EI.

Extremal Clause: Nothing is in EI unless it is obtained from the Basis and Inductive Clauses.

Example 4. Definition of the Set of Strings S over the alphabet {a,b} excepting empty string. This is the set of strings consisting of a's and b's such as abbab, bbabaa, etc.

The set S is the set that satisfies the following three clauses:

Basis Clause: a ∈ S, and b ∈ S.

Inductive Clause: For any element x in S, ax ∈ S, and bx ∈ S.

Here ax means the concatenation of a with x.

Extremal Clause: Nothing is in S unless it is obtained from the Basis and Inductive Clauses.

Tips for recursively defining a set:

For the "Basis Clause", try simplest elements in the set such as smallest numbers (0, or 1), simplest expressions, or shortest strings. Then see how other elements can be obtained from them, and generalize that generation process for the "Inductive Clause".

The set of propositions (propositional forms) can also be defined recursively.

Generalized set operations

As we saw earlier, union, intersection and Cartesian product of sets are associative. For example (A ∪ B) ∪ C = A ∪ (B ∪ C)

To denote either of these we often use A ∪ B ∪ C.

This can be generalized for the union of any finite number of sets as A1 ∪ A2 ∪.... ∪ An.

which we write as

       i = 1 n A i size 12{ union rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } } {}

This generalized union of sets can be rigorously defined as follows:

Definition ( i = 1 n A i size 12{ union rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } } {} ):

Basis Clause: For n = 1, i = 1 n A i = A 1 size 12{ union rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } =A rSub { size 8{1} } } {} .

Inductive Clause:   i = 1 n + 1 A i size 12{ union rSub { size 8{i=1} } rSup { size 8{n+1} } A rSub { size 8{i} } } {} = i = 1 n A i size 12{ union rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } } {} ∪ An+1

Similarly the generalized intersection i = 1 n A i size 12{ intersection rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } } {} and generalized Cartesian product i = 1 n A i size 12{ times rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } } {} can be defined.

Based on these definitions, De Morgan's law on set union and intersection can also be generalized as follows:

Theorem (Generalized De Morgan)

i = 1 n A i ¯ = i = 1 n A i ¯ size 12{ {overline { union rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } }} = intersection rSub { size 8{i=1} } rSup { size 8{n} } {overline {A rSub { size 8{i} } }} } {} ,     and

i = 1 n A i ¯ = i = 1 n A i ¯ size 12{ {overline { intersection rSub { size 8{i=1} } rSup { size 8{n} } A rSub { size 8{i} } }} = union rSub { size 8{i=1} } rSup { size 8{n} } {overline {A rSub { size 8{i} } }} } {}

Proof: These can be proven by induction on n and are left as an exercise.

Recursive definition of function

Some functions can also be defined recursively.

Condition: The domain of the function you wish to define recursively must be a set defined recursively.

How to define function recursively: First the values of the function for the basis elements of the domain are specified. Then the value of the function at an element, say x, of the domain is defined using its value at the parent(s) of the element x.

A few examples are given below.

They are all on functions from integer to integer except the last one.

Example 5: The function f(n) = n! for natural numbers n can be defined recursively as follows:

Questions & Answers

the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is cell divisoin?
Aron Reply
Diversity of living thing
ISCONT
what is cell division
Aron Reply
Cell division is the process by which a single cell divides into two or more daughter cells. It is a fundamental process in all living organisms and is essential for growth, development, and reproduction. Cell division can occur through either mitosis or meiosis.
AI-Robot
What is life?
Allison Reply
life is defined as any system capable of performing functions such as eating, metabolizing,excreting,breathing,moving,Growing,reproducing,and responding to external stimuli.
Mohamed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete structures. OpenStax CNX. Jan 23, 2008 Download for free at http://cnx.org/content/col10513/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask