# 3.2 Recursion

 Page 1 / 2
An overview of recursion and recursive algorithms from an object-oriented perspective.

## Recursive data structures

A recursive data structure is an object or class that contains an abstraction of itself.

In mathematical terms, we say that the object is "isomorphic" to itself. The basic embodiment of a recursive data structure is the Composite Design pattern . Recursive data structures enable us to represent repetitive abstract patterns. In such, they enable us to generate or represent complexity from simplicity.

Characteristics of a recursive data structure:

• Abstract representation : Since the actual total structure of the data is not known until run-time, the data must be represented by an abstraction, such as an abstract class or interface.
• Base case(s) : These represent the "end" of the pattern. They are the termination point(s) of the data structure.
• Inductive case(s) : These represent the on-going, "interior" portion of the repetitive pattern. They embody the ability to represent the data structure as a a simple connection between abstractly equivalent entities.

Recursive data structures are arguably the most important data structure in computer science as they are able to represent arbitrarily complex data. Indeed, if one looks across all the sciences, one sees that one of the fundamental modeling tools used is to attempt to

## Recursive algorithms

In order to process a recursive data structure, it makes sense that any such algorithm should reflect the recursive nature of the data structure:

A recursive algorithm is a process that accomplishes its task, in part, by calling an abstraction of itself

Recursion is thus a special case of delegation.

In light of the above definition, it is not surprising that recursive algorithms and recursive data structures share common characteristics:

Characteristics of a recursive algorithm:

• Abstract representation : Since the actual total process needed to process the recursive dataastructure of the data is not known until run-time, the algorithm must be represented by an abstraction, such as an abstract method (this is not the only way).
• Base case(s) : These represent the "end" of the algorithm. They are the termination point(s) of the algorithm.
• Inductive case(s) : These represent the on-going, "interior" portion of the algorithm. They embody the ability to process the recursive data structure by calling the same abstract process on the composed elements of the structure.

The similarity between recursive algorithms and recursive data structures is because in an OO system, the structure drives the algorithm . That is, it is the form of the data structure that determines the form if the algorithm. In an OO system, objects are asked to perform algorithms as they pertain to that object--that is, an algorithm on an object is a method of that object. The data has the behavior. The data is intelligent. This is in contrast to procedural or functional programming, where data is handed to the behavior. That is, stand-alone functions are used to process non-intelligent data. (Caveat: With all that said, in more advanced designs, we will show the algorithm can be decoupled from its data structure and thus be removed as a method of the data. This will not change the above principles however.)

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!