<< Chapter < Page Chapter >> Page >

Use reference angles to find all six trigonometric functions of 7 π 4 .

sin ( 7 π 4 ) = 2 2 , cos ( 7 π 4 ) = 2 2 , tan ( 7 π 4 ) = 1 , sec ( 7 π 4 ) = 2 , csc ( 7 π 4 ) = 2 , cot ( 7 π 4 ) = 1

Got questions? Get instant answers now!

Using even and odd trigonometric functions

To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine how each function treats a negative input. As it turns out, there is an important difference among the functions in this regard.

Consider the function f ( x ) = x 2 , shown in [link] . The graph of the function is symmetrical about the y -axis. All along the curve, any two points with opposite x -values have the same function value. This matches the result of calculation: ( 4 ) 2 = ( −4 ) 2 , ( −5 ) 2 = ( 5 ) 2 , and so on. So f ( x ) = x 2 is an even function, a function such that two inputs that are opposites have the same output. That means f ( x ) = f ( x ) .

This is an image of a graph of and upward facing parabola with points (-2, 4) and (2, 4) labeled.
The function f ( x ) = x 2 is an even function.

Now consider the function f ( x ) = x 3 , shown in [link] . The graph is not symmetrical about the y -axis. All along the graph, any two points with opposite x -values also have opposite y -values. So f ( x ) = x 3 is an odd function, one such that two inputs that are opposites have outputs that are also opposites. That means f ( x ) = f ( x ) .

This is an image of a graph of the function f of x = x to the third power with labels for points (-1, -1) and (1, 1).
The function f ( x ) = x 3 is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle, as in [link] . The sine of the positive angle is y . The sine of the negative angle is y . The sine function, then, is an odd function. We can test each of the six trigonometric functions in this fashion. The results are shown in [link] .

Graph of circle with angle of t and -t inscribed. Point of (x, y) is at intersection of terminal side of angle t and edge of circle. Point of (x, -y) is at intersection of terminal side of angle -t and edge of circle.
sin  t = y sin ( t ) = y sin  t sin ( t ) cos  t = x cos ( t ) = x cos  t = cos ( t ) tan ( t ) = y x tan ( t ) = y x tan  t tan ( t )
sec  t = 1 x sec ( t ) = 1 x sec  t = sec ( t ) csc  t = 1 y csc ( t ) = 1 y csc  t csc ( t ) cot  t = x y cot ( t ) = x y cot  t cot ( t )

Even and odd trigonometric functions

An even function is one in which f ( x ) = f ( x ) .

An odd function is one in which f ( x ) = f ( x ) .

Cosine and secant are even:

cos ( t ) = cos  t sec ( t ) = sec  t

Sine, tangent, cosecant, and cotangent are odd:

sin ( t ) = sin  t tan ( t ) = tan  t csc ( t ) = csc  t cot ( t ) = cot  t

Using even and odd properties of trigonometric functions

If the secant of angle t is 2, what is the secant of t ?

Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the secant of angle t is 2, the secant of t is also 2.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If the cotangent of angle t is 3 , what is the cotangent of t ?

3

Got questions? Get instant answers now!

Recognizing and using fundamental identities

We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further, and derive some fundamental identities. Identities are statements that are true for all values of the input on which they are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the Pythagorean Identity    we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and cosine.

Fundamental identities

We can derive some useful identities    from the six trigonometric functions. The other four trigonometric functions can be related back to the sine and cosine functions using these basic relationships:

tan t = sin t cos t
sec t = 1 cos t
csc t = 1 sin t
cot t = 1 tan t = cos t sin t

Questions & Answers

sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
Umesh Reply
I want to know trigonometry but I can't understand it anyone who can help
Siyabonga Reply
Yh
Idowu
which part of trig?
Nyemba
functions
Siyabonga
trigonometry
Ganapathi
differentiation doubhts
Ganapathi
hi
Ganapathi
hello
Brittany
Prove that 4sin50-3tan 50=1
Sudip Reply
f(x)= 1 x    f(x)=1x  is shifted down 4 units and to the right 3 units.
Sebit Reply
f (x) = −3x + 5 and g (x) = x − 5 /−3
Sebit
what are real numbers
Marty Reply
I want to know partial fraction Decomposition.
Adama Reply
classes of function in mathematics
Yazidu Reply
divide y2_8y2+5y2/y2
Sumanth Reply
wish i knew calculus to understand what's going on 🙂
Dashawn Reply
@dashawn ... in simple terms, a derivative is the tangent line of the function. which gives the rate of change at that instant. to calculate. given f(x)==ax^n. then f'(x)=n*ax^n-1 . hope that help.
Christopher
thanks bro
Dashawn
maybe when i start calculus in a few months i won't be that lost 😎
Dashawn
what's the derivative of 4x^6
Axmed Reply
24x^5
James
10x
Axmed
24X^5
Taieb
Thanks for this helpfull app
Axmed Reply
secA+tanA=2√5,sinA=?
richa Reply
tan2a+tan2a=√3
Rahulkumar
classes of function
Yazidu
if sinx°=sin@, then @ is - ?
NAVJIT Reply
the value of tan15°•tan20°•tan70°•tan75° -
NAVJIT
0.037 than find sin and tan?
Jon Reply
cos24/25 then find sin and tan
Deepak Reply
Practice Key Terms 6

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask