# 6.1 Interpolation, decimation, and rate changing by integer fractions

 Page 1 / 1

## Interpolation: by an integer factor l

Interpolation means increasing the sampling rate, or filling in in-between samples. Equivalent to sampling abandlimited analog signal $L$ times faster. For the ideal interpolator,

${X}_{1}(\omega )=\begin{cases}{X}_{0}(L\omega ) & \text{if \left|\omega \right|< \frac{\pi }{L}}\\ 0 & \text{if \frac{\pi }{L}\le \left|\omega \right|\le \pi }\end{cases}$
$y(m)=\begin{cases}{X}_{0}(\frac{m}{L}) & \text{if m=\{0, ±(L), ±(2L), \dots \}}\\ 0 & \text{otherwise}\end{cases}$
The DTFT of $y(m)$ is
$Y(\omega )=\sum_{m=-\omega }$ y m ω m n x 0 n ω L n n x n ω L n X 0 ω L
Since ${X}_{0}({\omega }^{\prime })$ is periodic with a period of $2\pi$ , ${X}_{0}(L\omega )=Y(\omega )$ is periodic with a period of $\frac{2\pi }{L}$ (see [link] ). By inserting zero samples between the samples of ${x}_{0}(n)$ , we obtain a signal with a scaled frequency response that simply replicates ${X}_{0}({\omega }^{\prime })$ $L$ times over a $2\pi$ interval!

Obviously, the desired ${x}_{1}(m)$ can be obtained simply by lowpass filtering $y(m)$ to remove the replicas.

${x}_{1}(m)=(y(m), {h}_{L}(m))$
Given ${H}_{L}(m)=\begin{cases}1 & \text{if \left|\omega \right|< \frac{\pi }{L}}\\ 0 & \text{if \frac{\pi }{L}\le \left|\omega \right|\le \pi }\end{cases}$ In practice, a finite-length lowpass filter is designed using any of the methods studied so far ( [link] ).

## Decimation: sampling rate reduction (by an integer factor m)

Let $y(m)={x}_{0}(Lm)$ ( [link] )

That is, keep only every $L$ th sample ( [link] ) In frequency (DTFT):
$Y(\omega )=\sum_{m=()}$ y m ω m m x 0 M m ω m n M m n x 0 n k δ n M k ω n M ω ω M n x 0 n k δ n M k ω n DTFT x 0 n DTFT δ n M k
Now $\mathrm{DTFT}(\sum \delta (n-Mk))=2\pi \sum_{k=0}^{M-1} X(k)\delta ({\omega }_{\prime }-\frac{2\pi k}{M})$ for $\left|\omega \right|< \pi$ as shown in homework #1, where $X(k)$ is the DFT of one period of the periodic sequence. In this case, $X(k)=1$ for $k\in \{0, 1, \dots , M-1\}$ and $\mathrm{DTFT}(\sum \delta (n-Mk))=2\pi \sum_{k=0}^{M-1} \delta ({\omega }_{\prime }-\frac{2\pi k}{M})$ .
$(\mathrm{DTFT}({x}_{0}(n)), \mathrm{DTFT}(\sum \delta (n-Mk)))=({X}_{0}({\omega }^{\prime }), 2\pi \sum_{k=0}^{M-1} \delta ({\omega }_{\prime }-\frac{2\pi k}{M}))=\frac{1}{2\pi }\int_{-\pi }^{\pi } {X}_{0}({\mu }^{\prime })2\pi \sum_{k=0}^{M-1} \delta ({\omega }_{\prime }-{\mu }_{\prime }-\frac{2\pi k}{M})\,d {\mu }^{\prime }=\sum_{k=0}^{M-1} {X}_{0}({\omega }_{\prime }-\frac{2\pi k}{M})$
so $Y(\omega )=\sum_{k=0}^{M-1} {X}_{0}(\frac{\omega }{M}-\frac{2\pi k}{M})$ i.e. , we get digital aliasing .( [link] ) Usually, we prefer not to have aliasing, so the downsampler is preceded by a lowpass filter to remove all frequencycomponents above $\left|\omega \right|< \frac{\pi }{M}$ ( [link] ).

## Rate-changing by a rational fraction l/m

This is easily accomplished by interpolating by a factor of $L$ , then decimating by a factor of $M$ ( [link] ).

The two lowpass filters can be combined into one LP filterwith the lower cutoff, $H(\omega )=\begin{cases}1 & \text{if \left|\omega \right|< \frac{\pi }{\max\{L , M\}}}\\ 0 & \text{if \frac{\pi }{\max\{L , M\}}\le \left|\omega \right|\le \pi }\end{cases}$ Obviously, the computational complexity and simplicity of implementation will depend on $\frac{L}{M}$ : $2/3$ will be easier to implement than $1061/1060$ !

so some one know about replacing silicon atom with phosphorous in semiconductors device?
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!