<< Chapter < Page Chapter >> Page >

Function operations

We, now, define valid operations for real functions in the light of discussion about the domain in the previous section. For different function operations, let us consider two real functions “f” and “g” with domains “ D 1 ” and “ D 2 ” respectively. Clearly, these domains are real number set R or subsets of R :

D 1, D 2 R


The addition of two real functions is denoted as “f+g”. It is defined as :

f + g : D 1 D 2 R such that :

f + g x = f x + g x for all x D 1 D 2


The subtraction of two real functions is denoted as “f-g”. It is defined as :

f g : D 1 D 2 R such that :

f g x = f x g x for all x D 1 D 2

Scalar multiplication

Scalar, here, means a real number constant, say “a”. The scalar multiplication of a real function with a constant is denoted as “af”. It is defined as :

a f : D 1 R such that :

a f x = a f x for all x D 1


The product of two real functions is denoted as “fg”. It is defined as :

f g : D 1 D 2 R such that :

f g x = f x g x for all x D 1 D 2


The quotient of two real functions is denoted as “f/g”. It involves rational form as “f(x)/g(x)”, which is defined for g(x) ≠ 0. We need to exclude value of “x” for which g(x) is zero. Hence, it is defined as :

f g : D 1 D 2 { x | g x 0 } R suchthat :

f g x = f x g x for all x D 1 D 2 { x | g x 0 }


Problem : Let two functions be defined as :

f x = x

g x = x 2 5 x + 6

Find domains of “fg” and “f/g”. Also define functions fg(x) and (f/g)(x).

Solution : The function f(x) is defined for all non negative real number. Hence, its domain is :

x 0

The function, g(x), - being a real quadratic polynomial - is real for all real values of “x”. Hence, its domain is “R”. Domains of two functions are shown in the figure.

Domain intervals

Domain interval of two functions

The domain of fg(x) is intersection of two intervals, which is non-negative interval as shown in the figure :

Domain interval

Domain interval of product

D = D 1 D 2 = [ 0, ] R

Here, we recall that intersection of a set with subset is equal to subset :

D = [ 0, ]

This is the domain of product function “fg(x)”. The domain of quotient function “f/g(x)” excludes values of “x” for which “g(x)” is zero. In other words, we exclude roots of “g(x)” from domain. Now,

g x = x 2 5 x + 6 = 0

g x = x 2 x 3 = 0

x = 2,3

Hence, domain of “f/g(x)” is :

Domain interval

Domain interval of product

D 1 D 2 { x | g x 0 } = [ 0, ] { 2,3 }

Now the product function, in rule form, is given as :

f g x = x x 2 5 x + 6 ; x 0

Similarly, quotient function, in rule form, is given as :

f g x = x x 2 5 x + 6 ; x 0, x 2, x 3

Problem : Find domain of the function :

f x = 2 ( x - 1 ) + ( 1 - x ) + ( x 2 + x + 1 )

Solution : Given function can be considered to be addition of three separate function. We know that scalar multiplication of a function does not change domain. As such, domain of 2 ( x - 1 ) is same as that of ( x - 1 ) . For ( x - 1 ) and ( 1 - x ) ,

x - 1 0 x 1 1 x 0 x 1

Now, we use sign rule for third function :

x 2 + x + 1 0

Here, coefficient of “ x 2 ” is positive and D is negative. Hence, function is positive for all real x. This means f(x)>0. This, in turn, means f(x)≥0. The domain of third function is R. Domain of given function is intersection of three domains. From figure, it is clear that only x=1 is common to three domains. Therefore,

Domain of function

Intersection of three domains.

Domain = { 1 }


Problem : Find the domain of the function given by :

f x = x x 2 5 x + 6

Solution :

The function is in rational form. We can treat numerator and denominator functions separately as f(x) and g(x). The numerator is valid for all real values of “x”. Hence, its domain is “R”.

D 1 = R

For determining domain of g(x), we are required to find the value of “x” for which square root in the denominator is real and not equal to zero. Thus, we need to evaluate square root expression for positive number. It means that :

x 2 5 x + 6 > 0 x 2 x 3 > 0

The roots of the corresponding quadratic equation is 2,3. Further, coefficient of " x 2 " term is a positive number (1>0) . Therefore, intervals on the sides are positive for the quadratic expression. The valid interval satisfying the inequality is :

x < 2 or x > 3

D 2 = - , 2 3,

Now, given function is quotient of two functions. Hence, domain of the given function is intersection of two domain excluding interval that renders denominator zero. However, we have already taken into account of this condition, while determining domain of the function in the denominator. Hence,


Domain of the function is equal to intersection of two domains.

Domain = D 1 D 2 = R { - , 2 3, }

Domain = { - , 2 3, }

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?