# 5.1 Lab 5: ctft and its applications

 Page 1 / 4

## Properties of ctft

The example covered in this section provides an implementation of CTFT and its properties. As mentioned earlier, programming environments can generate and work with only discrete values arranged in arrays. Thus, to get a continuous-time representation of a signal, use a very small value of time increment dt. For example, dt=0.001 means there are 1000 discrete samples in 1 second, which provides a good approximation to represent a low-frequency signal. However, when working with very high-frequency signals, one should decrease the value of dt further to ensure there are enough samples to represent the signal in a continuous fashion over a specified duration.

[link] shows the example of the completed block diagram for the CTFT (or FT) and its properties. This particular VI is capable of finding the FT of a rectangular and a triangular pulse. Create two input signals using the LabVIEW MathScript functions ones and zeros, which are combined in the time domain. Use a case structure to select the combination method (linear combination, convolution or multiplication) and the parameter mode1 to serve as an input that is connected to an Enum Control (Controls Modern Ring&Enum Enum) . Use parameters mode3 and mode4, which are connected to two Enum controls, to select the input signal type. Also set Pulse width, Time shift and Time scale as control parameters. Pulse width controls the number of ones in the pulse, which is used to increase or decrease the pulse width. Time shift adds zeros before the pulse to provide a time delay. Time scale is set to be multiplied with the time increment (dt) to ensure appropriate scaling of the pulse. Use the LabVIEW MathScript function `fft` to determine the FT of the continuous signal. Combine the signals in the frequency domain and control the combination method (linear combination, convolution or multiplication) via the parameter mode2. Compute the FT of the time domain combinations and the inverse FT of the frequency domain combinations using the functions `fft` and `ifft` . To shift the zero-frequency component to the center of the spectrum, use the LabVIEW MathScript function `fftshift` . Finally, determine the magnitude and phase of the FT using the functions `abs` and `angle` , respectively. Display the input signals and their combinations using a Build Waveform function (Functions → Programming Waveforms Build Waveforms) and a W aveform G raph (Controls Modern Graph Waveform Graph) . Also, display the spectrum magnitude and phase using a waveform graph.

[link] and [link] shows the front panel of the above system. Use controls named Pulse width, Time shift and Time scaling to change the waveforms in the time domain. Three waveform graphs for Input signal, Magnitude of FT and Phase of FT also appear in the front panel shown. With the specified front panel controls, one can easily verify CTFT properties. To begin with, run the program in continuous mode using the Run Continuously button.

can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!