# 15.6 Entropy and the second law of thermodynamics: disorder and  (Page 7/10)

 Page 7 / 10

## Section summary

• Entropy is the loss of energy available to do work.
• Another form of the second law of thermodynamics states that the total entropy of a system either increases or remains constant; it never decreases.
• Entropy is zero in a reversible process; it increases in an irreversible process.
• The ultimate fate of the universe is likely to be thermodynamic equilibrium, where the universal temperature is constant and no energy is available to do work.
• Entropy is also associated with the tendency toward disorder in a closed system.

## Conceptual questions

A woman shuts her summer cottage up in September and returns in June. No one has entered the cottage in the meantime. Explain what she is likely to find, in terms of the second law of thermodynamics.

Consider a system with a certain energy content, from which we wish to extract as much work as possible. Should the system’s entropy be high or low? Is this orderly or disorderly? Structured or uniform? Explain briefly.

Does a gas become more orderly when it liquefies? Does its entropy change? If so, does the entropy increase or decrease? Explain your answer.

Explain how water’s entropy can decrease when it freezes without violating the second law of thermodynamics. Specifically, explain what happens to the entropy of its surroundings.

Is a uniform-temperature gas more or less orderly than one with several different temperatures? Which is more structured? In which can heat transfer result in work done without heat transfer from another system?

Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system’s entropy in this process?

What is the change in entropy in an adiabatic process? Does this imply that adiabatic processes are reversible? Can a process be precisely adiabatic for a macroscopic system?

Does the entropy of a star increase or decrease as it radiates? Does the entropy of the space into which it radiates (which has a temperature of about 3 K) increase or decrease? What does this do to the entropy of the universe?

Explain why a building made of bricks has smaller entropy than the same bricks in a disorganized pile. Do this by considering the number of ways that each could be formed (the number of microstates in each macrostate).

## Problem exercises

(a) On a winter day, a certain house loses $5\text{.}\text{00}×{\text{10}}^{8}\phantom{\rule{0.25em}{0ex}}\text{J}$ of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of $\text{21.0º C}$ and an average outdoor temperature of $5.00º C$ ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?

(a) $9.78×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}\text{J/K}$

(b) In order to gain more energy, we must generate it from things within the house, like a heat pump, human bodies, and other appliances. As you know, we use a lot of energy to keep our houses warm in the winter because of the loss of heat to the outside.

On a hot summer day, $4\text{.}\text{00}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{J}$ of heat transfer into a parked car takes place, increasing its temperature from $\text{35.0º C}$ to $\text{45.0º C}$ . What is the increase in entropy of the car due to this heat transfer alone?

A hot rock ejected from a volcano’s lava fountain cools from $\text{1100º C}$ to $\text{40.0º C}$ , and its entropy decreases by 950 J/K. How much heat transfer occurs from the rock?

$8.01×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{J}$

When $1\text{.}\text{60}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{J}$ of heat transfer occurs into a meat pie initially at $\text{20.0º C}$ , its entropy increases by 480 J/K. What is its final temperature?

The Sun radiates energy at the rate of $3\text{.}\text{80}×{\text{10}}^{\text{26}}\phantom{\rule{0.25em}{0ex}}\text{W}$ from its $\text{5500º C}$ surface into dark empty space (a negligible fraction radiates onto Earth and the other planets). The effective temperature of deep space is $-\text{270º C}$ . (a) What is the increase in entropy in one day due to this heat transfer? (b) How much work is made unavailable?

(a) $1\text{.}\text{04}×{\text{10}}^{\text{31}}\phantom{\rule{0.25em}{0ex}}\text{J/K}$

(b) $3\text{.}\text{28}×{\text{10}}^{\text{31}}\phantom{\rule{0.25em}{0ex}}\text{J}$

(a) In reaching equilibrium, how much heat transfer occurs from 1.00 kg of water at $\text{40.0º C}$ when it is placed in contact with 1.00 kg of $\text{20.0º C}$ water in reaching equilibrium? (b) What is the change in entropy due to this heat transfer? (c) How much work is made unavailable, taking the lowest temperature to be $\text{20.0º C}$ ? Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy .

What is the decrease in entropy of 25.0 g of water that condenses on a bathroom mirror at a temperature of $\text{35.0º C}$ , assuming no change in temperature and given the latent heat of vaporization to be 2450 kJ/kg?

199 J/K

Find the increase in entropy of 1.00 kg of liquid nitrogen that starts at its boiling temperature, boils, and warms to $\text{20.0º C}$ at constant pressure.

A large electrical power station generates 1000 MW of electricity with an efficiency of 35.0%. (a) Calculate the heat transfer to the power station, ${Q}_{\text{h}}$ , in one day. (b) How much heat transfer ${Q}_{\text{c}}$ occurs to the environment in one day? (c) If the heat transfer in the cooling towers is from $\text{35.0º C}$ water into the local air mass, which increases in temperature from $\text{18.0º C}$ to $\text{20.0º C}$ , what is the total increase in entropy due to this heat transfer? (d) How much energy becomes unavailable to do work because of this increase in entropy, assuming an $\text{18.0º C}$ lowest temperature? (Part of ${Q}_{\text{c}}$ could be utilized to operate heat engines or for simply heating the surroundings, but it rarely is.)

(a) $2\text{.}\text{47}×{\text{10}}^{\text{14}}\phantom{\rule{0.25em}{0ex}}\text{J}$

(b) $1\text{.}\text{60}×{\text{10}}^{\text{14}}\phantom{\rule{0.25em}{0ex}}\text{J}$

(c) $2.85×{\text{10}}^{\text{10}}\phantom{\rule{0.25em}{0ex}}\text{J/K}$

(d) $8.29×{\text{10}}^{\text{12}}\phantom{\rule{0.25em}{0ex}}\text{J}$

(a) How much heat transfer occurs from 20.0 kg of $\text{90.0º C}$ water placed in contact with 20.0 kg of $\text{10.0º C}$ water, producing a final temperature of $\text{50.0º C}$ ? (b) How much work could a Carnot engine do with this heat transfer, assuming it operates between two reservoirs at constant temperatures of $\text{90.0º C}$ and $\text{10.0º C}$ ? (c) What increase in entropy is produced by mixing 20.0 kg of $\text{90.0º C}$ water with 20.0 kg of $\text{10.0º C}$ water? (d) Calculate the amount of work made unavailable by this mixing using a low temperature of $\text{10.0º C}$ , and compare it with the work done by the Carnot engine. Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy . (e) Discuss how everyday processes make increasingly more energy unavailable to do work, as implied by this problem.

how to solve wave question
I would like to know how I am not at all smart when it comes to math. please explain so I can understand. sincerly
Emma
Just know d relationship btw 1)wave length 2)frequency and velocity
Talhatu
First of all, you are smart and you will get it👍🏽... v = f × wavelength see my youtube channel: "mathwithmrv" if you want to know how to rearrange equations using the balance method
PhysicswithMrV
nice self promotion though xD
Beatrax
thanks dear
Chuks
please guys help, what is the difference between concave lens and convex lens
convex lens brings rays of light to a focus while concave diverges rays of light
Christian
for mmHg to kPa yes
Matthew
it depends on the size
Vincent
a lens which diverge the ray of light
rinzuala
concave diverges light
Matthew
thank you guys
Vincent
A diverging lens
Yusuf
What is isotope
Yusuf
each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. "some elements have only one stable isotope
Karthi
what is wire wound resistors?
What are the best colleges to go to for physics
I would like to know this too
Trevor
How do I calculate uncertainty in a frequency?
Calculate . ..
Olufunsho
What is light wave
What is wave
Sakeenah
What is light
Sakeenah
okay
True
explain how neurons communicate feed and stimulate
Jeff
Great science students
Omo
A wave is a disturbance which travels through the medium transferring energy from one form to another without causing any permanent displacement of d medium itself
OGOR
Light is a form o wave
OGOR
Neurons communicate by sending message through nerves in coordination
OGOR
What are petrochemicals, give two examples
OGOR
light has dual nature, particle as well as wave. when we want to explain phenomena like Interference of light, then we consider light as wave.
Lalita
what is it as in the form of it or how to visualize it or what it contains
Matthew
particles of light are like small packets of energy called photons, and flow or motion of photons is wave like
Lalita
light is just the energy of which photons emit
Matthew
the wave is how they travel
Matthew
photons do not emitt energy, they are energy. They are massless particles.
Lalita
a wave is a disturbance through the medium. Have you ever thrown a stone in still water? the disturbance produced travels in form of wave, the wave produced by throwing stone in still water are circular in nature.
Lalita
a photon does contain mass when in motion. it doesnt contain mass when at rest
Matthew
when would it ever be at rest
Bob
a wave is a disturbance of which energy travels
Matthew
that's darkness. darkness has no mass because the photons within in aren't moving or producing energy
Matthew
Hi guys. Please I've been trying to understand the concept of SHM, but it's not been really easy, could someone please explain it to me or suggest a site I could visit? Thank you.
Odo
Matthew
effective mass of photons only comes into picture when we consider it accelerating in gravitational field, mass of photon has no meaning as it is always travelling with speed of light and is never at rest. with that high speed, Energy and momentum are equivalent. and darkness is absense of photons.
Lalita
darkness is absense of light. not the presence of 'resting photons'. photons are never at rest.
Lalita
photons are present in darkness but don't give off any light because they are stationary with no mass or energy. once a force makes them move again they will gain mass and give off light
Matthew
this theory is presented in Einsteins theory of special relativity
Matthew
A.The velocity Vo for the streamline flow of liquid in a small tube depends on the radius r of the tube,the density and the viscosity iter of the liquid .use the dimensional analysis to obtain an expression for the velocity . B.Given that Vo =r square ×p all over 4×iter ×l
True
A.The velocity Vo for the streamline flow of liquid in a small tube depends on the radius r of the tube,the density (rho)and the viscosity (iter)of the liquid. Use the method of dimensional analysis to obtain an expression for the velocity . B.Given that Vo =r square x p all over 4 x iter x l
True
Matthew, photons ARE light. there is no such thing as a photon that isn't moving. in fact the speed they move at is called C (for constant) in physics. through a vacuum they always travel at this speed no matter what. they can not slow down; except in another medium.
The reason why a photon can go at this speed is BECAUSE it had no mass. nothing can go this speed or faster because it needs to have no mass or negative mass. that's why it's called the constant.
when a photon hits something that is opaque, this is the only way to "stop"it. it isn't merely stopped but absorbed and turned into heat energy, then the remaining energy is reflected in different wavelengths. that reflection is what we call color. the darker something is, the less photons are ther
e. complete blackness is the absolute absence of photons altogether. I believe what you're referring to is not speed, but wavelength, which is indirectly proportional to the amount of energy a particular photon is made up of.
in order for a photon to have zero wavelength, it must (at least theoretically) have infinite energy.
about mass: you may have photons confused with electrons. elections have a mass so small that people say they are without mass, but they do. it is called electron mass or Me-.
you may also be getting electrons and photons confused because of the cherenkov effect. that is what happens when a particle travels faster than light IN THAT PARTICULAR MEDIUM. I emphasize that because no other particle besides photons can go the speed of c.
when a particle goes faster than light in a particular medium, a blue light is emitted, called cherenkov radiation. this is why nuclear reactors glow blue.
nuclear reactors release so much energy that when they emit electrons, those electrons are given enough energy to go faster than light in that medium (in this case water), releasing blue light. if you put the reactor in air or a vacuum, this effect wouldn't happen because the speed of light in air
is very close to c, which is the universal speed limit. I'd you did go faster than c, time would go backwards and you would have infinite theoretical mass and probably spagghettify, like with a black hole.
*if
*electrons
light waves can travel through a vacuum, and do not require a medium. In empty space, the wave does not dissipate (grow smaller) no matter how far it travels, because the wave is not interacting with anything else.
Salim
Please is there any instructional material for sounds Waves, Echo, light waves
Salami
how far there is hot topic that is boarding me now
Abraham
linear motion
Ahmed
kinematic
Abraham
Akinsanya
kinematic
Emma
kinematics disscuss the motion without cuases ...
ghulam
wow I like what am seeing here I need someone to brush me up in physics in fact I'll say I know nothing
Godslight
How does the Geiger tube works
pls he do we find for tension
tension is equal to the weight of the object. so for example if something weighs 45 Newtons then the tension in the Rope holding it is 45 Newtons. and because it is in equilibrium if the object is 45N and there are three ropes holding it there would be 15 N of tension in each to equal the weight
Shii
does that work for you?
Shii
tnx
Belinda
very correct
Kudzy
A prankster applies 450 V to an 80.0 µF capacitor and then tosses it to an unsuspecting victim. The victim’s finger is burned by the discharge of the capacitor through 0.200 g of flesh. What is the temperature increase of the flesh? Is it reasonable to assume no phase change?
what is mass
the quantity of matter that a body contains, as measured by its acceleration under a given force or by the force exerted on it by a gravitational field.
Aliyu
I agree wth aliyu shuwa
Nikita
correct
Jalil
or in easier terms the amount of stuff in an object (stuff meaning whatever element or material that makes the object heavy) the object composition
Shii
an object's resistance to change in motion?
Kudzy
your mass never changes but your weight changes based on the gravitational pull of a system or planet. your mass is just the amount of matter with a certain object
Matthew
please can someone help, why a bats can fly in the night without heating anything, how does he managed an see in darkness?
Vincent
...hit an obstacle and has bounced back.
Odo
Hi Vincent. From what I can remember and what I've learnt, bats do not have a good eye sight and so they make use of waves, when they send out waves and they do not return back to them, they realise that the site is free of obstacles but if it sends a wave and it returns back, it means it hit an
Odo
obstacle and bounced back
Odo
So bats make use of waves in place of eye sight. I think but confirm from a few sites .
Odo
they us echolocation to make a sort of mental map. many sea animals use the same method. this can also be compared to sonar which works in the same way
Matthew
y is atom d smallest particle
yes
Lajpat
its a question Lajpat Rai
EDWIN
Google Quantum Physics or refer to the text
Shii
atoms are considered the smallest unit of matter. it is further divided into three subatomic particles: protons, neutrons, and electrons.
Arshiya
what's the dimensions of moment of inertia?
what is the same conditions
what is important property of thermistor
Naveedkhan
a horizontal force of 10n is applied to a 4.0kg block that is at rest on a perfectly smooth, level surface.find the speed of the block and how far has it gone after 6.0s.
10n/4.0kg=2.5m/s^2 v=6.0sx2.5m/s^2= 15m/s (15m/s x 15m/s x 2)÷ (2.5m/s^2 )= 180m
could yoy guve me formula
Denz
v=u+at, a=F/m=10/4, t=6, u=0, so v=15m/s, v2-u2=2as, so s=45m
praveen
a=F/m. 10n/4kg =2.5m/s^2 a=v/t but v=at = 2.5m/ s^2×6s=15m/s v^2=2as. but s=v^2/2a =15^2÷(2×2.5^2)=45m
Thank yoy guys. i'm having a bad time on our Physics class We're now studying work energy theorem can someone interested teaching me?
Denz
what is resistance of copper wire length
Naveedkhan