<< Chapter < Page Chapter >> Page >

We could, with some difficulty, calculate the probability for observing a drop of ink when there are 10 23 molecules. However, we can reasonably extrapolate from our small calculations that the probability is essentially zero for the ink molecules, randomly distributed into the water molecules, to be found together. The reason why we observe ink to disperse in water is that the probability is infinitesimally small for randomly distributed dye molecules to be congregated in a drop.

Interestingly, however, when we set up the real ink and water experiment, we did not randomly distribute the ink molecules. Rather, we began initially with a drop of ink in which the dye molecules were already congregated. We know that, according to the Kinetic Molecular Theory, the molecules are in constant random motion. Therefore, they must be constantly rearranging themselves. Since these random motions do not energetically favor any one arrangement over any other one arrangement, we can assume that all possible arrangements are equally probable. Since most of the arrangements do not correspond to a drop of ink, then most of the time we will not observe a drop. In the case above with five blue marbles in 500 boxes, we expect to see a drop only once in every 500 million times we look at the "glass." In a real glass of water with a real drop of ink, the chances are very much smaller than this.

We draw two very important conclusions from our model. First, the random motions of molecules make every possible arrangement of these molecules equally probable. Second, mixing occurs spontaneously simply because there are vastly many more arrangements which are mixed than which are not. The first conclusion tells us "how" mixing occurs, and the second tells us "why." On the basis of these observations, we deduce the following preliminary generalization: a spontaneous process occurs because it produces the most probable final state.

Probability and entropy

There is a subtlety in our conclusion to be considered in more detail. We have concluded that all possible arrangements of molecules are equally probable. We have further concluded that mixing occurs because the final mixed state is overwhelmingly probable. Placed together, these statements appear to be openly contradictory. To see why they are not, we must analyze the statements carefully. By an "arrangement" of the molecules, we mean a specification of the location of each and every molecule. We have assumed that, due to random molecular motion, each such arrangement is equally probable. In what sense, then, is the final state "overwhelmingly probable"?

Recall the system illustrated in Figure 1, where we placed three identical blue marbles into ten spaces. We calculated before that there are 120 unique ways to do this. If we ask for the probability of the arrangement in Figure 1a, the answer is thus 1/120. This is also the probability for each of the other possible arrangements, according to our model. However, if we now ask instead for the probability of observing a "mixed" state (with no drop), the answer is 112/120, whereas the probability of observing an "unmixed" state (with a drop) is only 8/120. Clearly, the probabilities are not the same when considering the less specific characteristics "mixed" and "unmixed."

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask