<< Chapter < Page Chapter >> Page >
In this section of the lab we will focus on how power can be conserved using hardware and software.

One of the most important quality standards for battery powered devices is battery life. Handheld medical tools, electricity meters, personal digital assistants, and a goal of the designer and programmer is to lower the power use of the embedded system to negligible levels. This portion of the lab will give an overview of how power can be conserved using hardware and software. In designing battery powered devices, savings can be gained from the choice of electronic components, the arrangement of components, and the software on the design. The exercises will integrate the low power modes of the MSP into existing labs, so that examples of software power savings can be shown.

Measuring power on the 226 board with the msp

The 226 board has the ability to measure its own current consumption from the USB cable. The ZXCT1009F (component U10) connects to channel 5 of the ADC on the MSP. This voltage will be proportional to the current passing through the device. The circuit can measure up to 500 mA used.

Shutting off parts in general

Most parts have a shutdown or sleep mode available that will reduce the current consumption of the component considerably. In general, digital parts consume significant current when their transistors switch because of the charging and discharging of the internal capacitances of the transistors. Analog integrated circuits also support shutdown modes to reduce power consumption. Datasheets will specify the current consumption in both on and shutdown modes of the component. It is important to note that when a device is in shutdown mode, power and ground voltages are still powered and connected to the device.

In order to shutdown most integrated circuits, all that is required is a shutdown or sleep pin to be asserted properly. Other devices require a shutdown command to be issued over the bus. The primary disadvantages of shutdown modes, apart from the fact that the device is inoperative is that recovering back into normal operating modes can impose a significant delay. A useful property of the MSP is that its recovery time from some low-power modes is fast enough to meet the response times of interrupts.

Parts without built-in shutdown modes must be shutdown by having its current supply controlled through a transistor or other switching device.

Using the low power modes

The MSP430 was designed with the low power modes in mind from its beginnings. In lower power mode, the processor can achieve current in the microamps while still monitoring its inputs. While the 226 board cannot take advantage of this ability because of the other higher power components on the board, the principles of utilizing the MSP power modes are described in detail in the second chapter of the MSP User's Guide. The modes vary the degree to which the processor is aware of its surroundings and the clocks that the processor keeps running. The processor lowers power consumption partly by shutting off external and internal oscillators.

There are four low power modes in addition to regular operating mode on the MSP430:

  • Active Mode is the fully powered mode when the processor executes code and all clocks and peripherals are active. The chip consumes about 340 µA with 1 MHz clock at 3.3V in this mode.
  • Low Power Mode 1 (LPM1) disables the CPU and MCLK while leaving the ACLK and SMCLK enabled. This allows timers, peripherals, and analog systems to continue operation while dropping current consumption to about 70 µA with 1MHz clock at 3.3V. Because the timers and other internal interrupt systems still operate, the processor will be able to wake itself.
  • Low Power Mode 2 (LPM2) disables the CPU, MCLK, and the DCO are disabled but the SMCLK and ACLK are active. The DC is disabled if the DCO is not used for MCLK or SMCLK in active mode. Internal interrupts can still operate. Current consumption drops to about 17 µA.
  • Low Power Mode 3 (LPM3) disables the CPU, MCLK, SMCLK, and DCO. The DC and ACLK remain active. This allows some peripherals and internal interrupts to continue. Current consumption drops to about 2 µA.
  • Low Power Mode 4 (LPM4) Current consumption drops to about .1 µA, but all clocks and the CPU are disabled. This prevents any of the on-chip modules from operating, and only off-chip interrupts can wake the device.

To enter a low power mode the status register in the CPU must be set to indicate the desired mode. Specifically the bits SCG1, SCG0, OSCOFF, and CPUOFF. The User's Guide details the specific bits needed. Also provided in the chapter is some example code on changing power modes. To exit low power mode, an interrupt is needed. In the interrupt, the previous status register state can be altered so that exiting the interrupt will leave the processor awake. The User's Guide explains in detail the specifics of entering and leaving low power mode. Example code with the compiler also demonstrates the low power modes.

Principles of low power operation on the msp

The User's Guide for the MSP also explains the principles needed to lower the power consumption of a design. These principles assume that the microcontroller is a significant portion of the board's current consumption. In the case of the 226 board, this is not the case. First, minimize wasteful code execution. This is the same idea as improving speed performance because every unnecessary instruction wastes a little bit of battery power. All of the techniques that improve code efficiency will improve power efficiency. Increasing clock speed will not yield similar power savings because faster execution increases power consumption. Similarly, unused peripheral modules on the processor should be de-activated to save power. Use interrupts to handle events to allow the processor to stay in Low Power Mode 3 as much as possible. By reducing the awake time of the processor, the average current consumption of the MSP can be reduced to levels approximately as low as LPM3 while maintaining the same functionality.

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Microcontroller and embedded systems laboratory. OpenStax CNX. Feb 11, 2006 Download for free at http://cnx.org/content/col10215/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microcontroller and embedded systems laboratory' conversation and receive update notifications?