<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. In this chapter the student is shown how graphs provide information that is not always evident from the equation alone. The chapter begins by establishing the relationship between the variables in an equation, the number of coordinate axes necessary to construct its graph, and the spatial dimension of both the coordinate system and the graph. Interpretation of graphs is also emphasized throughout the chapter, beginning with the plotting of points. The slope formula is fully developed, progressing from verbal phrases to mathematical expressions. The expressions are then formed into an equation by explicitly stating that a ratio is a comparison of two quantities of the same type (e.g., distance, weight, or money). This approach benefits students who take future courses that use graphs to display information.The student is shown how to graph lines using the intercept method, the table method, and the slope-intercept method, as well as how to distinguish, by inspection, oblique and horizontal/vertical lines. Objectives of this module: be able to locate solutions to linear inequalities in two variables using graphical techniques.

Overview

  • Location of Solutions
  • Method of Graphing

Location of solutions

In our study of linear equations in two variables, we observed that all the solutions to the equation, and only the solutions to the equation, were located on the graph of the equation. We now wish to determine the location of the solutions to linear inequalities in two variables. Linear inequalities in two variables are inequalities of the forms:

a x + b y c a x + b y c a x + b y < c a x + b y > c

Half-planes

A straight line drawn through the plane divides the plane into two half-planes .

Boundary line

The straight line is called the boundary line .

A straight line dividing an xy plane in two half-planes.

Solution to an inequality in two variables

Recall that when working with linear equations in two variables, we observed that ordered pairs that produced true statements when substituted into an equation were called solutions to that equation. We can make a similar statement for inequalities in two variables. We say that an inequality in two variables has a solution when a pair of values has been found such that when these values are substituted into the inequality a true statement results.

The location of solutions in the plane

As with equations, solutions to linear inequalities have particular locations in the plane. All solutions to a linear inequality in two variables are located in one and only in one entire half-plane. For example, consider the inequality

2 x + 3 y 6

A straight line in an xy plane passing through two points with coordinates  zero, two and three, zero. Equation of this line is two x plus three y equal to six. Points lying in the shaded region below the line are the solutions of inequality two x plus three y less than equal to six.

All the solutions to the inequality 2 x + 3 y 6 lie in the shaded half-plane.

Point A ( 1 , 1 ) is a solution since

2 x + 3 y 6 2 ( 1 ) + 3 ( 1 ) 6 ? 2 3 6 ? 1 6. True

Got questions? Get instant answers now!

Point B ( 2 , 5 ) is not a solution since

2 x + 3 y 6 2 ( 2 ) + 3 ( 5 ) 6 ? 4 + 15 6 ? 19 6. False

Got questions? Get instant answers now!

Method of graphing

The method of graphing linear inequalities in two variables is as follows:

  1. Graph the boundary line (consider the inequality as an equation, that is, replace the inequality sign with an equal sign).
    1. If the inequality is or , draw the boundary line solid . This means that points on the line are solutions and are part of the graph.
    2. If the inequality is < or > , draw the boundary line dotted . This means that points on the line are not solutions and are not part of the graph.
  2. Determine which half-plane to shade by choosing a test point.
    1. If, when substituted, the test point yields a true statement, shade the half-plane containing it.
    2. If, when substituted, the test point yields a false statement, shade the half-plane on the opposite side of the boundary line.

Sample set a

Graph 3 x 2 y 4 .

1. Graph the boundary line. The inequality is so we’ll draw the line solid . Consider the inequality as an equation.

3 x 2 y = 4

x y ( x , y )
0 4 3 2 0 ( 0 , 2 ) ( 4 3 , 0 )


A graph of a line passing through two points with coordinates zero, two and negative four upon three,  zero. Boundary line points on this line are included in solutions of inequality.

2. Choose a test point. The easiest one is ( 0 , 0 ) . Substitute ( 0 , 0 ) into the original inequality.

3 x 2 y 4 3 ( 0 ) 2 ( 0 ) 4 ? 0 0 4 ? 0 4. True
Shade the half-plane containing ( 0 , 0 ) .
A straight line in an xy plane passing through two points with coordinates zero, two and negative four upon three, zero. Points lying in the region to the right of the line are solutions of the inequality and points lying  in the region left to the line are not solutions of the inequality. The test point zero, zero belongs to the shaded region.

Got questions? Get instant answers now!

Graph x + y 3 < 0 .

1. Graph the boundary line: x + y 3 = 0 . The inequality is < so we’ll draw the line dotted .

A graph of a dashed line passing through two points with coordinates zero, three and three, zero. Boundary line points on this line are not included in the solutions of the inequality.

2. Choose a test point, say ( 0 , 0 ) .

x + y 3 < 0 0 + 0 3 < 0 ? 3 < 0. True
Shade the half-plane containing ( 0 , 0 ) .

A dashed straight line in an xy plane passing through two points with coordinates zero, three and three, zero. The region to the left of the line is shaded. The test point zero, zero belongs to the shaded region.

Got questions? Get instant answers now!

Graph y 2 x .

  1. Graph the boundary line y = 2 x . The inequality is , so we’ll draw the line solid .

    A graph of a line passing through two points with coordinates zero, zero and one, two. Boundary line points on this line are included in the solutions of the inequality.
  2. Choose a test point, say ( 0 , 0 ) .

    y 2 x 0 2 ( 0 ) ? 0 0. True

    Shade the half-plane containing ( 0 , 0 ) . We can’t! ( 0 , 0 ) is right on the line! Pick another test point, say ( 1 , 6 ) .

    y 2 x 6 2 ( 1 ) ? 6 2. False

    Shade the half-plane on the opposite side of the boundary line.
    A straight line in an xy plane passing through two points with coordinates zero, zero and one, two. Points lying in the region to the right of the line are solutions of the inequality and points lying  in the region left to the line are not solutions of the inequality.The test point zero, zero belongs to the shaded region where as another test point one, six does not belong to the shaded region.
Got questions? Get instant answers now!

Graph y > 2 .

1. Graph the boundary line y = 2 . The inequality is > so we’ll draw the line dotted .

A graph of a dashed line parallel to x axis and passing through point with coordinates zero, two.

2. We don’t really need a test point. Where is y > 2 ? Above the line y = 2 ! Any point above the line clearly has a y -coordinate greater than 2.

A dashed straight line in an xy plane parallel to x axis and passing through point with coordinates zero, two. The region above the line is shaded.

Got questions? Get instant answers now!

Practice set a

Solve the following inequalities by graphing.

Exercises

Solve the inequalities by graphing.

Exercises for review

( [link] ) Graph the inequality 3 x + 5 1 .

A horizontal line with arrows on both ends.

A number line with arrows on each end, labeled from negative three to three, in increments of one. There is an open circle at two. A dark line is orginating from this circle, and heading towards the left of two.

Got questions? Get instant answers now!

( [link] ) Supply the missing word. The geometric representation (picture) of the solutions to an equation is called the of the equation.

Got questions? Get instant answers now!

( [link] ) Supply the denominator: m = y 2 y 1 ? .

m = y 2 y 1 x 2 x 1

Got questions? Get instant answers now!

( [link] ) Graph the equation y = 3 x + 2 .

An xy-plane with gridlines, labeled negative five and five on the both axes.

Got questions? Get instant answers now!

( [link] ) Write the equation of the line that has slope 4 and passes through the point ( 1 , 2 ) .

y = 4 x + 6

Got questions? Get instant answers now!

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.
QuizOver Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask