6.2 Addition and subtraction of radical expressions

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The distinction between the principal square root of the number x and the secondary square root of the number x is made by explanation and by example. The simplification of the radical expressions that both involve and do not involve fractions is shown in many detailed examples; this is followed by an explanation of how and why radicals are eliminated from the denominator of a radical expression. Real-life applications of radical equations have been included, such as problems involving daily output, daily sales, electronic resonance frequency, and kinetic energy.Objectives of this module: understand the process used in adding and subtracting square roots, be able to add and subtract square roots.

Overview

• The Logic Behind The Process
• The Process

The logic behind the process

Now we will study methods of simplifying radical expressions such as

$\begin{array}{ccccc}4\sqrt{3}+8\sqrt{3}& & \text{or}& & 5\sqrt{2x}-11\sqrt{2x}+4\left(\sqrt{2x}+1\right)\end{array}$

The procedure for adding and subtracting square root expressions will become apparent if we think back to the procedure we used for simplifying polynomial expressions such as

$\begin{array}{ccccc}4x+8x& & \text{or}& & 5a-11a+4\left(a+1\right)\end{array}$

The variables $x$ and $a$ are letters representing some unknown quantities (perhaps $x$ represents $\sqrt{3}$ and $a$ represents $\sqrt{2x}$ ). Combining like terms gives us

$\begin{array}{ccccc}4x+8x=12x\hfill & \hfill & \text{or}\hfill & \hfill & 4\sqrt{3}+8\sqrt{3}=12\sqrt{3}\hfill \\ \text{and}\hfill & \hfill & \hfill & \hfill & \hfill \\ 5a-11a+4\left(a+1\right)\hfill & \hfill & \text{or}\hfill & \hfill & 5\sqrt{2x}-11\sqrt{2x}+4\left(\sqrt{2x}+1\right)\hfill \\ 5a-11a+4a+4\hfill & \hfill & \hfill & \hfill & 5\sqrt{2x}-11\sqrt{2x}+4\sqrt{2x}+4\hfill \\ -2a+4\hfill & \hfill & \hfill & \hfill & -2\sqrt{2x}+4\hfill \end{array}$

The process

Let’s consider the expression $4\sqrt{3}+8\sqrt{3}.$ There are two ways to look at the simplification process:

1. We are asking, “How many square roots of 3 do we have?”

$4\sqrt{3}$ means we have 4 “square roots of 3”

$8\sqrt{3}$ means we have 8 “square roots of 3”

Thus, altogether we have 12 “square roots of 3.”
2. We can also use the idea of combining like terms. If we recall, the process of combining like terms is based on the distributive property

$\begin{array}{ccccc}4x+8x=12x& & \text{because}& & 4x+8x=\left(4+8\right)x=12x\end{array}$

We could simplify $4\sqrt{3}+8\sqrt{3}$ using the distributive property.

$4\sqrt{3}+8\sqrt{3}=\left(4+8\right)\sqrt{3}=12\sqrt{3}$

Both methods will give us the same result. The first method is probably a bit quicker, but keep in mind, however, that the process works because it is based on one of the basic rules of algebra, the distributive property of real numbers.

Sample set a

Simplify the following radical expressions.

$-6\sqrt{10}+11\sqrt{10}=5\sqrt{10}$

$\begin{array}{ccccc}4\sqrt{32}+5\sqrt{2}.\hfill & \hfill & \hfill & \hfill & \text{Simplify}\text{}\sqrt{32}.\hfill \\ 4\sqrt{16\text{}·\text{}2}+5\sqrt{2}\hfill & =\hfill & 4\sqrt{16}\sqrt{2}+5\sqrt{2}\hfill & \hfill & \hfill \\ \hfill & =\hfill & 4\text{}·\text{}4\sqrt{2}+5\sqrt{2}\hfill & \hfill & \hfill \\ \hfill & =\hfill & 16\sqrt{2}+5\sqrt{2}\hfill & \hfill & \hfill \\ \hfill & =\hfill & 21\sqrt{2}\hfill & \hfill & \hfill \end{array}$

$\begin{array}{ccccc}-3x\sqrt{75}+2x\sqrt{48}-x\sqrt{27}.\hfill & \hfill & \hfill & \hfill & \text{Simple each of the three radicals}\text{.}\hfill \\ \hfill & =\hfill & -3x\sqrt{25\text{}·\text{}3}+2x\sqrt{16\text{}·\text{}3}-x\sqrt{9\text{}·\text{}3}\hfill & \hfill & \hfill \\ \hfill & =\hfill & -15x\sqrt{3}+8x\sqrt{3}-3x\sqrt{3}\hfill & \hfill & \hfill \\ \hfill & =\hfill & \left(-15x+8x-3x\right)\sqrt{3}\hfill & \hfill & \hfill \\ \hfill & =\hfill & -10x\sqrt{3}\hfill & \hfill & \hfill \end{array}$

$\begin{array}{ccccc}5a\sqrt{24{a}^{3}}-7\sqrt{54{a}^{5}}+{a}^{2}\sqrt{6a}+6a.\hfill & \hfill & \hfill & \hfill & \text{Simplify each radical}\text{.}\hfill \\ \hfill & =\hfill & 5a\sqrt{4\text{}·\text{}6\text{}·\text{}{a}^{2}\text{}·\text{}a}-7\sqrt{9\text{}·\text{}6\text{}·\text{}{a}^{4}\text{}·\text{}a}+{a}^{2}\sqrt{6a}+6a\hfill & \hfill & \hfill \\ \hfill & =\hfill & 10{a}^{2}\sqrt{6a}-21{a}^{2}\sqrt{6a}+{a}^{2}\sqrt{6a}+6a\hfill & \hfill & \hfill \\ \hfill & =\hfill & \left(10{a}^{2}-21{a}^{2}+{a}^{2}\right)\sqrt{6a}+6a\hfill & \hfill & \hfill \\ \hfill & =\hfill & -10{a}^{2}\sqrt{6a}+6a\hfill & \hfill & \begin{array}{l}\text{Factor out}-2a\text{.}\hfill \\ \text{(This step is optional}\text{.)}\hfill \end{array}\hfill \\ \hfill & =\hfill & -2a\left(5a\sqrt{6a}-3\right)\hfill & \hfill & \hfill \end{array}$

Practice set a

Find each sum or difference.

$4\sqrt{18}-5\sqrt{8}$

$2\sqrt{2}$

$6x\sqrt{48}+8x\sqrt{75}$

$64x\sqrt{3}$

$-7\sqrt{84x}-12\sqrt{189x}+2\sqrt{21x}$

$-48\sqrt{21x}$

$9\sqrt{6}-8\sqrt{6}+3$

$\sqrt{6}+3$

$\sqrt{{a}^{3}}+4a\sqrt{a}$

$5a\sqrt{a}$

$4x\sqrt{54{x}^{3}}+\sqrt{36{x}^{2}}+3\sqrt{24{x}^{5}}-3x$

$18{x}^{2}\sqrt{6x}+3x$

Sample set b

$\begin{array}{ccccc}\frac{3+\sqrt{8}}{3-\sqrt{8}}.& & & & \begin{array}{l}\text{We'll\hspace{0.17em}rationalize\hspace{0.17em}the\hspace{0.17em}denominator\hspace{0.17em}by\hspace{0.17em}multiplying\hspace{0.17em}this\hspace{0.17em}fraction}\\ \text{by\hspace{0.17em}1\hspace{0.17em}in\hspace{0.17em}the\hspace{0.17em}form}\frac{3+\sqrt{8}}{3+\sqrt{8}}.\end{array}\\ \frac{3+\sqrt{8}}{3-\sqrt{8}}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{3+\sqrt{8}}{3+\sqrt{8}}& =& \frac{\left(3+\sqrt{8}\right)\left(3+\sqrt{8}\right)}{{3}^{2}-{\left(\sqrt{8}\right)}^{2}}& & \\ & =& \frac{9+3\sqrt{8}+3\sqrt{8}+\sqrt{8}\sqrt{8}}{9-8}& & \\ & =& \frac{9+6\sqrt{8}+8}{1}& & \\ & =& 17+6\sqrt{8}& & \\ & =& 17+6\sqrt{4\text{\hspace{0.17em}}·\text{\hspace{0.17em}}2}& & \\ & =& 17+12\sqrt{2}& & \end{array}$

$\begin{array}{ccccc}\frac{2+\sqrt{7}}{4-\sqrt{3}}.\hfill & \hfill & \hfill & \hfill & \begin{array}{l}\text{Rationalize the denominator by multiplying this fraction by}\hfill \\ \text{1 in the from}\frac{4+\sqrt{3}}{4+\sqrt{3}}.\hfill \end{array}\hfill \\ \frac{2+\sqrt{7}}{4-\sqrt{3}}\text{}·\text{}\frac{4+\sqrt{3}}{4+\sqrt{3}}\hfill & =\hfill & \frac{\left(2+\sqrt{7}\right)\left(4+\sqrt{3}\right)}{{4}^{2}-{\left(\sqrt{3}\right)}^{2}}\hfill & \hfill & \hfill \\ \hfill & =\hfill & \frac{8+2\sqrt{3}+4\sqrt{7}+\sqrt{21}}{16-3}\hfill & \hfill & \hfill \\ \hfill & =\hfill & \frac{8+2\sqrt{3}+4\sqrt{7}+\sqrt{21}}{13}\hfill & \hfill & \hfill \end{array}$

Practice set b

Simplify each by performing the indicated operation.

$\sqrt{5}\left(\sqrt{6}-4\right)$

$\sqrt{30}-4\sqrt{5}$

$\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{2}+\sqrt{8}\right)$

$3\sqrt{10}+3\sqrt{14}$

$\left(3\sqrt{2}-2\sqrt{3}\right)\left(4\sqrt{3}+\sqrt{8}\right)$

$8\sqrt{6}-12$

$\frac{4+\sqrt{5}}{3-\sqrt{8}}$

$12+8\sqrt{2}+3\sqrt{5}+2\sqrt{10}$

Exercises

For the following problems, simplify each expression by performing the indicated operation.

$4\sqrt{5}-2\sqrt{5}$

$2\sqrt{5}$

$10\sqrt{2}+8\sqrt{2}$

$-3\sqrt{6}-12\sqrt{6}$

$-15\sqrt{6}$

$-\sqrt{10}-2\sqrt{10}$

$3\sqrt{7x}+2\sqrt{7x}$

$5\sqrt{7x}$

$6\sqrt{3a}+\sqrt{3a}$

$2\sqrt{18}+5\sqrt{32}$

$26\sqrt{2}$

$4\sqrt{27}-3\sqrt{48}$

$\sqrt{200}-\sqrt{128}$

$2\sqrt{2}$

$4\sqrt{300}+2\sqrt{500}$

$6\sqrt{40}+8\sqrt{80}$

$12\sqrt{10}+32\sqrt{5}$

$2\sqrt{120}-5\sqrt{30}$

$8\sqrt{60}-3\sqrt{15}$

$13\sqrt{15}$

$\sqrt{{a}^{3}}-3a\sqrt{a}$

$\sqrt{4{x}^{3}}+x\sqrt{x}$

$3x\sqrt{x}$

$2b\sqrt{{a}^{3}{b}^{5}}+6a\sqrt{a{b}^{7}}$

$5xy\sqrt{2x{y}^{3}}-3{y}^{2}\sqrt{2{x}^{3}y}$

$2x{y}^{2}\sqrt{2xy}$

$5\sqrt{20}+3\sqrt{45}-3\sqrt{40}$

$\sqrt{24}-2\sqrt{54}-4\sqrt{12}$

$-4\sqrt{6}-8\sqrt{3}$

$6\sqrt{18}+5\sqrt{32}+4\sqrt{50}$

$-8\sqrt{20}-9\sqrt{125}+10\sqrt{180}$

$-\sqrt{5}$

$2\sqrt{27}+4\sqrt{3}-6\sqrt{12}$

$\sqrt{14}+2\sqrt{56}-3\sqrt{136}$

$5\sqrt{14}-6\sqrt{34}$

$3\sqrt{2}+2\sqrt{63}+5\sqrt{7}$

$4ax\sqrt{3x}+2\sqrt{3{a}^{2}{x}^{3}}+7\sqrt{3{a}^{2}{x}^{3}}$

$13ax\sqrt{3x}$

$3by\sqrt{5y}+4\sqrt{5{b}^{2}{y}^{3}}-2\sqrt{5{b}^{2}{y}^{3}}$

$\sqrt{2}\left(\sqrt{3}+1\right)$

$\sqrt{6}+\sqrt{2}$

$\sqrt{3}\left(\sqrt{5}-3\right)$

$\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)$

$\sqrt{15}-\sqrt{10}$

$\sqrt{7}\left(\sqrt{6}-\sqrt{3}\right)$

$\sqrt{8}\left(\sqrt{3}+\sqrt{2}\right)$

$2\left(\sqrt{6}+2\right)$

$\sqrt{10}\left(\sqrt{10}-\sqrt{5}\right)$

$\left(1+\sqrt{3}\right)\left(2-\sqrt{3}\right)$

$-1+\sqrt{3}$

$\left(5+\sqrt{6}\right)\left(4-\sqrt{6}\right)$

$\left(3-\sqrt{2}\right)\left(4-\sqrt{2}\right)$

$7\left(2-\sqrt{2}\right)$

$\left(5+\sqrt{7}\right)\left(4-\sqrt{7}\right)$

$\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}+3\sqrt{5}\right)$

$17+4\sqrt{10}$

$\left(2\sqrt{6}-\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{3}\right)$

$\left(4\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}+\sqrt{3}\right)$

$54-2\sqrt{15}$

$\left(3\sqrt{8}-2\sqrt{2}\right)\left(4\sqrt{2}-5\sqrt{8}\right)$

$\left(\sqrt{12}+5\sqrt{3}\right)\left(2\sqrt{3}-2\sqrt{12}\right)$

$-42$

${\left(1+\sqrt{3}\right)}^{2}$

${\left(3+\sqrt{5}\right)}^{2}$

$14+6\sqrt{5}$

${\left(2-\sqrt{6}\right)}^{2}$

${\left(2-\sqrt{7}\right)}^{2}$

$11-4\sqrt{7}$

${\left(1+\sqrt{3x}\right)}^{2}$

${\left(2+\sqrt{5x}\right)}^{2}$

$4+4\sqrt{5x}+5x$

${\left(3-\sqrt{3x}\right)}^{2}$

${\left(8-\sqrt{6b}\right)}^{2}$

$64-16\sqrt{6b}+6b$

${\left(2a+\sqrt{5a}\right)}^{2}$

${\left(3y-\sqrt{7y}\right)}^{2}$

$9{y}^{2}-6y\sqrt{7y}+7y$

$\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)$

$\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)$

$-1$

$\left(8+\sqrt{10}\right)\left(8-\sqrt{10}\right)$

$\left(6+\sqrt{7}\right)\left(6-\sqrt{7}\right)$

29

$\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)$

$\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)$

3

$\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)$

$\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)$

$x-y$

$\frac{2}{5+\sqrt{3}}$

$\frac{4}{6+\sqrt{2}}$

$\frac{2\left(6-\sqrt{2}\right)}{17}$

$\frac{1}{3-\sqrt{2}}$

$\frac{1}{4-\sqrt{3}}$

$\frac{4+\sqrt{3}}{13}$

$\frac{8}{2-\sqrt{6}}$

$\frac{2}{3-\sqrt{7}}$

$3+\sqrt{7}$

$\frac{\sqrt{5}}{3+\sqrt{3}}$

$\frac{\sqrt{3}}{6+\sqrt{6}}$

$\frac{2\sqrt{3}-\sqrt{2}}{10}$

$\frac{2-\sqrt{8}}{2+\sqrt{8}}$

$\frac{4+\sqrt{5}}{4-\sqrt{5}}$

$\frac{21+8\sqrt{5}}{11}$

$\frac{1+\sqrt{6}}{1-\sqrt{6}}$

$\frac{8-\sqrt{3}}{2+\sqrt{18}}$

$\frac{-16+2\sqrt{3}+24\sqrt{2}-3\sqrt{6}}{14}$

$\frac{6-\sqrt{2}}{4+\sqrt{12}}$

$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

$5-2\sqrt{6}$

$\frac{\sqrt{6a}-\sqrt{8a}}{\sqrt{8a}+\sqrt{6a}}$

$\frac{\sqrt{2b}-\sqrt{3b}}{\sqrt{3b}+\sqrt{2b}}$

$2\sqrt{6}-5$

Exercises for review

( [link] ) Simplify ${\left(\frac{{x}^{5}{y}^{3}}{{x}^{2}y}\right)}^{5}.$

( [link] ) Simplify ${\left(8{x}^{3}y\right)}^{2}{\left({x}^{2}{y}^{3}\right)}^{4}.$

$64{x}^{14}{y}^{14}$

( [link] ) Write ${\left(x-1\right)}^{4}{\left(x-1\right)}^{-7}$ so that only positive exponents appear.

( [link] ) Simplify $\sqrt{27{x}^{5}{y}^{10}{z}^{3}.}$

$3{x}^{2}{y}^{5}z\sqrt{3xz}$

( [link] ) Simplify $\frac{1}{2+\sqrt{x}}$ by rationalizing the denominator.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Read also:

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

 By By Qqq Qqq