<< Chapter < Page Chapter >> Page >
R tot = R 1 + R p . size 12{R rSub { size 8{"tot"} } =R rSub { size 8{1} } +R rSub { size 8{p} } } {}

First, we find R p size 12{R rSub { size 8{p} } } {} using the equation for resistors in parallel and entering known values:

1 R p = 1 R 2 + 1 R 3 = 1 6 . 00 Ω + 1 13 . 0 Ω = 0 . 2436 Ω . size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{2} } } } + { {1} over {R rSub { size 8{3} } } } = { {1} over {6 "." "00" %OMEGA } } + { {1} over {"13" "." 0 %OMEGA } } = { {0 "." "2436"} over { %OMEGA } } } {}

Inverting gives

R p = 1 0 . 2436 Ω = 4 . 11 Ω . size 12{R rSub { size 8{p} } = { {1} over {0 "." "2436"} } %OMEGA =4 "." "11" %OMEGA } {}

So the total resistance is

R tot = R 1 + R p = 1 . 00 Ω + 4 . 11 Ω = 5 . 11 Ω . size 12{R rSub { size 8{"tot"} } =R rSub { size 8{1} } +R rSub { size 8{p} } =1 "." "00" %OMEGA +4 "." "11 " %OMEGA =5 "." "11 " %OMEGA } {}

Discussion for (a)

The total resistance of this combination is intermediate between the pure series and pure parallel values ( 20.0 Ω and 0.804 Ω , respectively) found for the same resistors in the two previous examples.

Strategy and Solution for (b)

To find the IR size 12{ ital "IR"} {} drop in R 1 size 12{R rSub { size 8{1} } } {} , we note that the full current I size 12{I} {} flows through R 1 size 12{R rSub { size 8{1} } } {} . Thus its IR size 12{ ital "IR"} {} drop is

V 1 = IR 1 . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } } {}

We must find I size 12{I} {} before we can calculate V 1 size 12{V rSub { size 8{1} } } {} . The total current I size 12{I} {} is found using Ohm’s law for the circuit. That is,

I = V R tot = 12 . 0 V 5 . 11 Ω = 2 . 35 A . size 12{I= { {V} over {R rSub { size 8{"tot"} } } } = { {"12" "." 0" V"} over {5 "." "11 " %OMEGA } } =2 "." "35"" A"} {}

Entering this into the expression above, we get

V 1 = IR 1 = ( 2 . 35 A ) ( 1 . 00 Ω ) = 2 . 35 V . size 12{V rSub { size 8{1} } = ital "IR" rSub { size 8{1} } = \( 2 "." "35"" A" \) \( 1 "." "00" %OMEGA \) =2 "." "35"" V"} {}

Discussion for (b)

The voltage applied to R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} is less than the total voltage by an amount V 1 size 12{V rSub { size 8{1} } } {} . When wire resistance is large, it can significantly affect the operation of the devices represented by R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} .

Strategy and Solution for (c)

To find the current through R 2 size 12{R rSub { size 8{2} } } {} , we must first find the voltage applied to it. We call this voltage V p size 12{V rSub { size 8{p} } } {} , because it is applied to a parallel combination of resistors. The voltage applied to both R 2 size 12{R rSub { size 8{2} } } {} and R 3 size 12{R rSub { size 8{3} } } {} is reduced by the amount V 1 size 12{V rSub { size 8{1} } } {} , and so it is

V p = V V 1 = 12 . 0 V 2 . 35 V = 9 . 65 V . size 12{V rSub { size 8{p} } =V - V rSub { size 8{1} } ="12" "." 0" V" - 2 "." "35"" V"=9 "." "65"" V"} {}

Now the current I 2 size 12{I rSub { size 8{2} } } {} through resistance R 2 size 12{R rSub { size 8{2} } } {} is found using Ohm’s law:

I 2 = V p R 2 = 9 . 65 V 6 . 00 Ω = 1 . 61 A . size 12{I rSub { size 8{2} } = { {V rSub { size 8{p} } } over {R rSub { size 8{2} } } } = { {9 "." "65 V"} over {6 "." "00 " %OMEGA } } =1 "." "61"" A"} {}

Discussion for (c)

The current is less than the 2.00 A that flowed through R 2 size 12{R rSub { size 8{2} } } {} when it was connected in parallel to the battery in the previous parallel circuit example.

Strategy and Solution for (d)

The power dissipated by R 2 size 12{R rSub { size 8{2} } } {} is given by

P 2 = ( I 2 ) 2 R 2 = ( 1 . 61 A ) 2 ( 6 . 00 Ω ) = 15 . 5 W . size 12{P rSub { size 8{2} } = \( I rSub { size 8{2} } \) rSup { size 8{2} } R rSub { size 8{2} } = \( 1 "." "61"" A" \) rSup { size 8{2} } \( 6 "." "00" %OMEGA \) ="15" "." 5" W"} {}

Discussion for (d)

The power is less than the 24.0 W this resistor dissipated when connected in parallel to the 12.0-V source.

Applying the science practices: circuit construction kit (dc only)

Plan an experiment to analyze the effect on currents and potential differences due to rearrangement of resistors and variations in voltage sources. Your experimental investigation should include data collection for at least five different scenarios of rearranged resistors (i.e., several combinations of series and parallel) and three scenarios of different voltage sources.

Practical implications

One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is drawn, the IR size 12{ ital "IR"} {} drop in the wires can also be significant.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily. Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to resistance inside the battery itself).

What is happening in these high-current situations is illustrated in [link] . The device represented by R 3 size 12{R rSub { size 8{3} } } {} has a very low resistance, and so when it is switched on, a large current flows. This increased current causes a larger IR size 12{ ital "IR"} {} drop in the wires represented by R 1 size 12{R rSub { size 8{1} } } {} , reducing the voltage across the light bulb (which is R 2 size 12{R rSub { size 8{2} } } {} ), which then dims noticeably.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask