<< Chapter < Page Chapter >> Page >
This module will take the ideas of sampling CT signals further by examining how such operations can be performed in the frequency domain and by using a computer.


We just covered ideal (and non-ideal) (time) sampling of CT signals . This enabled DT signal processing solutions for CTapplications ( ):

Much of the theoretical analysis of such systems relied on frequency domain representations. How do we carry out thesefrequency domain analysis on the computer? Recall the following relationships: x n DTFT X x t CTFT X where and are continuous frequency variables.

Sampling dtft

Consider the DTFT of a discrete-time (DT) signal x n . Assume x n is of finite duration N ( i.e. , an N -point signal).

X n N 1 0 x n n
where X is the continuous function that is indexed by thereal-valued parameter . The other function, x n , is a discrete function that is indexed by integers.

We want to work with X on a computer. Why not just sample X ?

X k X 2 N k n N 1 0 x n 2 k N n
In we sampled at 2 N k where k 0 1 N 1 and X k for k 0 N 1 is called the Discrete Fourier Transform (DFT) of x n .

Finite duration dt signal

The DTFT of the image in is written as follows:

X n N 1 0 x n n
where is any 2 -interval, for example .

Sample x()

where again we sampled at 2 N k where k 0 1 M 1 . For example, we take M 10 . In the following section we will discuss in more detail how we should choose M , the number of samples in the 2 interval.

(This is precisely how we would plot X in Matlab.)

Got questions? Get instant answers now!

Choosing m

Case 1

Given N (length of x n ), choose M N to obtain a dense sampling of the DTFT ( ):

Case 2

Choose M as small as possible (to minimize the amount of computation).

In general, we require M N in order to represent all information in n n 0 N 1 x n Let's concentrate on M N : x n DFT X k for n 0 N 1 and k 0 N 1 numbers Nnumbers

Discrete fourier transform (dft)


X k X 2 k N
where N length x n and k 0 N 1 . In this case, M N .


X k n N 1 0 x n 2 k N n

Inverse dft (idft)

x n 1 N k N 1 0 X k 2 k N n


Represent x n in terms of a sum of N complex sinusoids of amplitudes X k and frequencies k k 0 N 1 k 2 k N

Fourier Series with fundamental frequency 2 N

Remark 1

IDFT treats x n as though it were N -periodic.

x n 1 N k N 1 0 X k 2 k N n
where n 0 N 1

What about other values of n ?

x n N ???

Got questions? Get instant answers now!

Remark 2

Proof that the IDFT inverts the DFT for n 0 N 1

1 N k N 1 0 X k 2 k N n 1 N k N 1 0 m N 1 0 x m 2 k N m 2 k N n ???

Computing dft

Given the following discrete-time signal ( ) with N 4 , we will compute the DFT using two different methods (the DFTFormula and Sample DTFT):

  • DFT Formula
    X k n N 1 0 x n 2 k N n 1 2 k 4 2 k 4 2 2 k 4 3 1 2 k k 3 2 k
    Using the above equation, we can solve and get thefollowing results: x 0 4 x 1 0 x 2 0 x 3 0
  • Sample DTFT. Using the same figure, , we will take the DTFT of the signal and get the following equations:
    X n 0 3 n 1 4 1 ???
    Our sample points will be: k 2 k 4 2 k where k 0 1 2 3 ( ).

Got questions? Get instant answers now!

Periodicity of the dft

DFT X k consists of samples of DTFT, so X , a 2 -periodic DTFT signal, can be converted to X k , an N -periodic DFT.

X k n N 1 0 x n 2 k N n
where 2 k N n is an N -periodic basis function (See ).

Also, recall,

x n 1 N n N 1 0 X k 2 k N n 1 N n N 1 0 X k 2 k N n m N ???


When we deal with the DFT, we need to remember that, in effect, this treats the signal as an N -periodic sequence.

Got questions? Get instant answers now!

A sampling perspective

Think of sampling the continuous function X , as depicted in . S will represent the sampling function applied to X and is illustrated in as well. This will result in our discrete-time sequence, X k .

Remember the multiplication in the frequency domain is equal to convolution in the time domain!

Inverse dtft of s()

k 2 k N
Given the above equation, we can take the DTFT and get thefollowing equation:
N m n m N S n

Why does equal S n ?

S n is N -periodic, so it has the following Fourier Series :

c k 1 N n N 2 N 2 n 2 k N n 1 N
S n k 2 k N n
where the DTFT of the exponential in the above equation is equal to 2 k N .

Got questions? Get instant answers now!

So, in the time-domain we have ( ):


Combine signals in to get signals in .

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Intro to digital signal processing. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10203/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intro to digital signal processing' conversation and receive update notifications?