<< Chapter < Page Chapter >> Page >

The base case of the recursion are lists of size zero or one, which are always sorted. The algorithm always terminates because it puts at least one element in its final place on each iteration (the loop invariant).

In simple pseudocode , the algorithm might be expressed as:

function quicksort(array)

var list less, pivotList, greater

if length(array) ≤ 1

return array

select a pivot value pivot from array

for each x in array

if x<pivot then add x to less

if x = pivot then add x to pivotList

if x>pivot then add x to greater

return concatenate(quicksort(less), pivotList, quicksort(greater))

Notice that we only examine elements by comparing them to other elements. This makes quicksort a comparison sort .

Version with in-place partition

Partition

In-place partition in action on a small list. The boxed element is the pivot element, blue elements are less or equal, and red elements are larger.

The disadvantage of the simple version above is that it requires Ω(n) extra storage space, which is as bad as mergesort (see big-O notation for the meaning of Ω). The additional memory allocations required can also drastically impact speed and cache performance in practical implementations. There is a more complicated version which uses an in-place partition algorithm and can achieve O(log n) space use on average for good pivot choices:

function partition(array, left, right, pivotIndex)

pivotValue := array[pivotIndex]

swap( array, pivotIndex, right) // Move pivot to end

storeIndex := left - 1

for i from left to right-1

if array[i]<= pivotValue

storeIndex := storeIndex + 1

swap( array, storeIndex, i)

swap( array, right, storeIndex+1) // Move pivot to its final place

return storeIndex+1

This form of the partition algorithm is not the original form; multiple variations can be found in various textbooks, such as versions not having the storeIndex. However, this form is probably the easiest to understand.

This is the in-place partition algorithm. It partitions the portion of the array between indexes left and right, inclusively, by moving all elements less than or equal to a[pivotIndex] to the beginning of the subarray, leaving all the greater elements following them. In the process it also finds the final position for the pivot element, which it returns. It temporarily moves the pivot element to the end of the subarray, so that it doesn't get in the way. Because it only uses exchanges, the final list has the same elements as the original list. Notice that an element may be exchanged multiple times before reaching its final place.

Once we have this, writing quicksort itself is easy:

function quicksort(array, left, right)

if right>left

select a pivot index (e.g. pivotIndex := left)

pivotNewIndex := partition(array, left, right, pivotIndex)

quicksort(array, left, pivotNewIndex-1)

quicksort(array, pivotNewIndex+1, right)

Parallelization

Like mergesort , quicksort can also be easily parallelized due to its divide-and-conquer nature. Individual in-place partition operations are difficult to parallelize, but once divided, different sections of the list can be sorted in parallel. If we have p processors, we can divide a list of n elements into p sublists in Θ(n) average time, then sort each of these in average time. Ignoring the O(n) preprocessing, this is linear speedup . Given Θ(n) processors, only O(n) time is required overall.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Data structures and algorithms. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10765/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Data structures and algorithms' conversation and receive update notifications?

Ask