<< Chapter < Page Chapter >> Page >

Screen output

The text shown in Figure 13 should appear in the browser window when you open the html file in the browser.

Figure 13 . Screen output for Listing #5.
Start Script On EarthArrow is at 89.9 feet at 1.00 seconds Arrow is at 89.9 feet at 5.21 secondsOn the Moon Arrow is at 89.9 feet at 0.86 secondsArrow is at 89.9 feet at 36.33 seconds End Script

A function named getRoots

The quadratic formula isn't very complicated, but it is fairly tedious and easy to type incorrectly. Therefore, I decided to encapsulate it in afunction that we can copy into future scripts saving us the need to type it correctly in the future.

Listing 5 begins with the definition of a function named getRoots that receives the parameters a, b, and c, and returns the roots of the quadraticequation in a two-element array.

Real or imaginary roots

The roots of a quadratic equation can be either real or imaginary. If the roots are imaginary, this function simply returns NaN (not a number) for eachroot.

The parameters of the problem

Following the definition of the getRoots function, Listing 5 declares and initializes several variables to establish the parameters of the problem, such as the accelerationof gravity on the earth and moon, the initial velocity of the arrow, etc.

The computed height versus the target height

The target height for the problem is 89.9 feet. Note that the variable named d contains that value less the initial height of 6 feet. Thus, the script willfind the time at which the arrow has traveled 83.9 feet on the way up, and the time that it has traveled that same distance on the way back down.

Establish quadratic coefficients

The next three lines of code use the problem parameters to establish values for the standard coefficients of a quadratic equation, a, b, and c, as described above . Note that at this point in the script, the coefficient named a is based on the acceleration of gravity on earth. (Later, it will be changed to reflect the acceleration ofgravity on the moon.)

Get the roots of the quadratic equation

Then the script calls the getRoots function, passing a, b, and c as parameters, and stores the returned array containing the roots in the variablenamed roots .

Following that, the script extracts the roots from the array and displays them as shown by the text in the upper half of Figure 13 .

Repeat the process for the moon

Then Listing 5 sets the value of the coefficient named a to reflect theacceleration of gravity on the moon, repeats the process, and displays the results in the lower half of Figure 13 .

Note that the arrow reaches the target height somewhat quicker on the moon due to the lower acceleration of gravity, and takes much longer to arrive at thesame height on the way back down to the surface of the moon. Were we to create a chart similar to Figure 4 for the moon, we would see that the arrow goes much higher before turning around and falling back to the surface of the moon.

Other useful equations

You have learned how to use the following equation to solve various physics problems involving motion in a straight line with uniform acceleration so far inthis module.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Accessible physics concepts for blind students. OpenStax CNX. Oct 02, 2015 Download for free at https://legacy.cnx.org/content/col11294/1.36
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Accessible physics concepts for blind students' conversation and receive update notifications?