# 2.2 The real number line and the real numbers  (Page 2/2)

 Page 2 / 2

## $x/0$ Is undefined or indeterminant

Division by 0 is undefined or indeterminant.

Do not divide by 0.

Rational numbers have decimal representations that either terminate or do not terminate but contain a repeating block of digits. Some examples are:

$\begin{array}{cc}\underset{\text{Terminating}}{\underbrace{\frac{3}{4}=0.75}}& \underset{\text{Nonterminating,}\text{​}\text{\hspace{0.17em}}\text{but}\text{\hspace{0.17em}}\text{​}\text{repeating}\text{​}}{\underbrace{\frac{15}{11}=1.36363636\dots }}\end{array}$

Some rational numbers are graphed below.

## Irrational numbers

The irrational numbers $\left(Ir\right)$ : Irrational numbers are numbers that cannot be written as the quotient of two integers. They are numbers whose decimal representations are nonterminating and nonrepeating. Some examples are

$\begin{array}{cc}4.01001000100001\dots & \pi =3.1415927\dots \end{array}$

Notice that the collections of rational numbers and irrational numbers have no numbers in common.

When graphed on the number line, the rational and irrational numbers account for every point on the number line. Thus each point on the number line has a coordinate that is either a rational or an irrational number.

In summary, we have

## Sample set a

The summaray chart illustrates that

Every natural number is a real number.

Every whole number is a real number.

No integer is an irrational number.

## Practice set a

Is every natural number a whole number?

yes

Is every whole number an integer?

yes

Is every integer a rational number?

yes

Is every rational number a real number?

yes

Is every integer a natural number?

no

Is there an integer that is a natural number?

yes

## Ordering the real numbers

A real number $b$ is said to be greater than a real number $a$ , denoted $b>a$ , if the graph of $b$ is to the right of the graph of $a$ on the number line.

## Sample set b

As we would expect, $5>2$ since 5 is to the right of 2 on the number line. Also, $-2>-5$ since $-2$ is to the right of $-5$ on the number line.

## Practice set b

Are all positive numbers greater than 0?

yes

Are all positive numbers greater than all negative numbers?

yes

Is 0 greater than all negative numbers?

yes

Is there a largest positive number? Is there a smallest negative number?

no, no

How many real numbers are there? How many real numbers are there between 0 and 1?

infinitely many, infinitely many

## Sample set c

What integers can replace $x$ so that the following statement is true?

$-4\le x<2$

This statement indicates that the number represented by $x$ is between $-4$ and 2. Specifically, $-4$ is less than or equal to $x$ , and at the same time, $x$ is strictly less than 2. This statement is an example of a compound inequality.

The integers are $-4,\text{\hspace{0.17em}}-3,\text{\hspace{0.17em}}-2,\text{\hspace{0.17em}}-1,\text{\hspace{0.17em}}0,\text{\hspace{0.17em}}1$ .

Draw a number line that extends from $-3$ to 7. Place points at all whole numbers between and including $-2$ and 6.

Draw a number line that extends from $-4$ to 6 and place points at all real numbers greater than or equal to 3 but strictly less than 5.

It is customary to use a closed circle to indicate that a point is included in the graph and an open circle to indicate that a point is not included.

## Practice set c

What whole numbers can replace $x$ so that the following statement is true?

$-3\le x<3$

0, 1, 2

Draw a number line that extends from $-5$ to 3 and place points at all numbers greater than or equal to $-4$ but strictly less than 2.

## Exercises

For the following problems, next to each real number, note all collections to which it belongs by writing $N$ for natural numbers, $W$ for whole numbers, $Z$ for integers, $Q$ for rational numbers, $Ir$ for irrational numbers, and $R$ for real numbers. Some numbers may require more than one letter.

$\frac{1}{2}$

$Q,\text{\hspace{0.17em}}R$

$-12$

0

$W,\text{\hspace{0.17em}}Z,\text{\hspace{0.17em}}Q,\text{\hspace{0.17em}}R$

$-24\frac{7}{8}$

$86.3333\dots$

$Q,\text{\hspace{0.17em}}R$

$49.125125125\dots$

$-15.07$

$Q,\text{\hspace{0.17em}}R$

For the following problems, draw a number line that extends from $-3$ to 3. Locate each real number on the number line by placing a point (closed circle) at its approximate location.

$1\frac{1}{2}$

$-2$

$-\frac{1}{8}$

Is 0 a positive number, negative number, neither, or both?

neither

An integer is an even integer if it can be divided by 2 without a remainder; otherwise the number is odd. Draw a number line that extends from $-5$ to 5 and place points at all negative even integers and at all positive odd integers.

Draw a number line that extends from $-5$ to 5. Place points at all integers strictly greater than $-3$ but strictly less than 4.

For the following problems, draw a number line that extends from $-5$ to 5. Place points at all real numbers between and including each pair of numbers.

$-5$ and $-2$

$-3$ and 4

$-4$ and 0

Draw a number line that extends from $-5$ to 5. Is it possible to locate any numbers that are strictly greater than 3 but also strictly less than $-2$ ?

; no

For the pairs of real numbers shown in the following problems, write the appropriate relation symbol $\left(<,\text{\hspace{0.17em}}>,\text{\hspace{0.17em}}=\right)$ in place of the $\ast$ .

$-5\ast -1$

$-3\ast 0$

$<$

$-4\ast 7$

$6\ast -1$

$>$

$-\frac{1}{4}\ast -\frac{3}{4}$

Is there a largest real number? If so, what is it?

no

Is there a largest integer? If so, what is it?

Is there a largest two-digit integer? If so, what is it?

99

Is there a smallest integer? If so, what is it?

Is there a smallest whole number? If so, what is it?

yes, 0

For the following problems, what numbers can replace $x$ so that the following statements are true?

$\begin{array}{cc}-1\le x\le 5& x\text{\hspace{0.17em}}\text{an}\text{\hspace{0.17em}}\text{integer}\end{array}$

$\begin{array}{cc}-7

$-6,\text{\hspace{0.17em}}-5,\text{\hspace{0.17em}}-4,\text{\hspace{0.17em}}-3,\text{\hspace{0.17em}}-2$

$\begin{array}{cc}-3\le x\le 2,& x\text{\hspace{0.17em}}\text{a}\text{\hspace{0.17em}}\text{natural}\text{\hspace{0.17em}}\text{number}\end{array}$

$\begin{array}{cc}-15

There are no natural numbers between −15 and −1.

$\begin{array}{cc}-5\le x<5,& x\text{\hspace{0.17em}}\text{a}\text{\hspace{0.17em}}\text{whole}\text{\hspace{0.17em}}\text{number}\end{array}$

The temperature in the desert today was ninety-five degrees. Represent this temperature by a rational number.

${\left(\frac{95}{1}\right)}^{°}$

The temperature today in Colorado Springs was eight degrees below zero. Represent this temperature with a real number.

Is every integer a rational number?

Yes, every integer is a rational number.

Is every rational number an integer?

Can two rational numbers be added together to yield an integer? If so, give an example.

Yes. $\frac{1}{2}+\frac{1}{2}=1\text{}\text{or}\text{}1+1=2$

For the following problems, on the number line, how many units (intervals) are there between?

0 and 2?

$-5$ and 0?

5 units

0 and 6?

$-8$ and 0?

8 units

$-3$ and 4?

$m$ and $n$ , $m>n$ ?

$m-n\text{\hspace{0.17em}}\text{units}$

$-a$ and $-b$ , $-b>-a$ ?

## Exercises for review

( [link] ) Find the value of $6+3\left(15-8\right)-4$ .

23

( [link] ) Find the value of $5\left(8-6\right)+3\left(5+2\cdot 3\right)$ .

( [link] ) Are the statements $y<4$ and $y\ge 4$ the same or different?

different

( [link] ) Use algebraic notation to write the statement "six times a number is less than or equal to eleven."

( [link] ) Is the statement $8\left(15-3\cdot 4\right)-3\cdot 7\ge 3$ true or false?

true

An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply 12, 17, 22.... 25th term Alexandra Reply 12, 17, 22.... 25th term Akash College algebra is really hard? Shirleen Reply Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table. Carole find the 15th term of the geometric sequince whose first is 18 and last term of 387 Jerwin Reply I know this work salma The given of f(x=x-2. then what is the value of this f(3) 5f(x+1) virgelyn Reply hmm well what is the answer Abhi how do they get the third part x = (32)5/4 kinnecy Reply can someone help me with some logarithmic and exponential equations. Jeffrey Reply sure. what is your question? ninjadapaul 20/(×-6^2) Salomon okay, so you have 6 raised to the power of 2. what is that part of your answer ninjadapaul I don't understand what the A with approx sign and the boxed x mean ninjadapaul it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared Salomon I'm not sure why it wrote it the other way Salomon I got X =-6 Salomon ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6 ninjadapaul oops. ignore that. ninjadapaul so you not have an equal sign anywhere in the original equation? ninjadapaul hmm Abhi is it a question of log Abhi 🤔. Abhi I rally confuse this number And equations too I need exactly help salma But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends salma Commplementary angles Idrissa Reply hello Sherica im all ears I need to learn Sherica right! what he said ⤴⤴⤴ Tamia hii Uday hi salma what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks. Kevin Reply a perfect square v²+2v+_ Dearan Reply kkk nice Abdirahman Reply algebra 2 Inequalities:If equation 2 = 0 it is an open set? Kim Reply or infinite solutions? Kim The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined. Al y=10× Embra Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.