<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >

Wiskunde

Gewone breuke

Opvoeders afdeling

Memorandum

10. 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} = 40 60 size 12{ { { size 8{"40"} } over { size 8{"60"} } } } {} ; 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} = 45 60 size 12{ { { size 8{"45"} } over { size 8{"60"} } } } {} ; 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} = 48 60 size 12{ { { size 8{"48"} } over { size 8{"60"} } } } {}

  • a) 0,5 b) 0,25

c) 0,125 d) 0,75

e) 0,55 f) 0,8

g) 0,625 h) 0,875

i) 0,66 j) 0,36

12.3 (1 ÷ 4) + 3 = 3,25

12.4 0,3333333

  • a) 0,6666666

b) 0,4545454

12.6 a) 0, 6 . size 12{ {6} cSup { size 8{ "." } } } {}

b) 0, 4 . 5 . size 12{ {4} cSup { size 8{ "." } } {5} cSup { size 8{ "." } } } {}

  • a) 0,667

b) 0,455

Leerders afdeling

Inhoud

Aktiwiteit: breuke [lu 1.9.2, lu 1.10, lu 1.4]

10. KOPKRAPPER!

In ’n kompetisie spring Abdul se dolfyn 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} van ’n meter uit die water. Fatima s’n spring 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} van ’n meter uit bo die water terwyl Nazir s’n 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} van ’n meter bo die water uitspring. Wie se dolfyn het die hoogste gespring?

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

11.1 Het jy geweet?

Om gewone breuke na desimale breuke te herlei, maak ons gebruik van ekwivalente breuke.

Bv.
1 × 2
5 × 2
=
2
10
= 0,2

11. 2 Herlei die volgende breuke na desimale breuke:

a) 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ___________________ b) 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {} ___________________
c) 1 8 size 12{ { { size 8{1} } over { size 8{8} } } } {} ___________________ d) 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} ___________________
e) 11 20 size 12{ { { size 8{"11"} } over { size 8{"20"} } } } {} ___________________ f) 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} ___________________
g) 5 8 size 12{ { { size 8{5} } over { size 8{8} } } } {} ___________________ h) 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} ___________________
i) 33 50 size 12{ { { size 8{"33"} } over { size 8{"50"} } } } {} ___________________ j) 9 25 size 12{ { { size 8{9} } over { size 8{"25"} } } } {} ___________________

12. Onthou jy nog?

As ons bogenoemde met ’n sakrekenaar wil kontroleer, bv. 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} moet ons die volgende insleutel: 7 ÷ 8 =

12.2 Kontroleer nou die oefening hierbo (11.2) met behulp van jou sakrekenaar.

12.3 Hoe sal jy 3 en ’n kwart met behulp van ’n sakrekenaar herlei na ’n desimale breuk?

_____________________________________________________________________

_____________________________________________________________________

12.4 Hoe sal 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} lyk op ’n sakrekenar?

Sleutel 1 ÷ 3 = in en skryf die antwoord neer: _______________________________

Het jy geweet?

Ons noem ’n breuk soos 0,333333333333 ’n repeterende desimale breuk, en ons skryf dit so: 0, 3 . size 12{ {3} cSup { size 8{ "." } } } {}

12.5

a) Hoe sal twee derdes ( 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ) op die sakrekenaar lyk? _____________________________________________________________________

b) Hoe sal vyf elfdes ( 5 11 size 12{ { { size 8{5} } over { size 8{"11"} } } } {} ) op die sakrekenaar lyk? _____________________________________________________________________

12.6

Gee die kort skryfwyse vir bogenoemde:

a) __________________________________________________________________

b) __________________________________________________________________

12.7

Rond jou antwoorde af tot 3 desimale plekke:

a) __________________________________________________________________

b) __________________________________________________________________

13. TYD VIR SELFASSESSERING

  • Kleur die toepaslike gesiggie by elk van die volgende in:
Ek weet wat rasionale getalle is 1 2 3
Ek kan voorbeelde gee van ’n
egte breuk 1 2 3
onegte breuk 1 2 3
gemengde getal 1 2 3
Ek weet hoe om ekwivalente breuke te bereken 1 2 3
Ek kan breuke na desimale breuke herlei 1 2 3
Ek weet hoe om breuke op ’n sakrekenaar in te sleutel 1 2 3
Ek weet hoe om ’n repeterende desimale breuk aan te toon 1 2 3

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.4: Dit is duidelik wanneer die leerder ekwivalente vorms van die bogenoemde rasionale getalle herken en gebruik;

Assesseringstandaard 1.9: Dit is duidelik wanneer die leerder ‘n verskeidenheid tegnieke gebruik om berekeninge te doen, insluitend:

1.9.2: die gebruik van ‘n sakrekenaar;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask