<< Chapter < Page Chapter >> Page >


In Graad 10 het ons die idee van gemiddelde gradiënt ondersoek and gesien dat die gradiënt van sommige funksies verskillend is by verskillende intervalle. In Graad 11 kyk ons verder na die idee van gemiddelde gradiënt, en stel die idee van 'n gradiënt van 'n kurwe by 'n punt bekend.

Gemiddelde gradiënt

Ons het gesien dat die gemiddelde gradiënt tussen twee punte op 'n kurwe die gradiënt is van die reguitlyn wat deur twee punte gaan.

The gemiddelde gradiënt tussen twee punte op 'n kurwe is die gradiënt van die reguitlyn wat deur die twee punte gaan.

Wat gebeur met die gradiënt as ons die posisie van een punt vasstel en die tweede punt nader aan die vaste punt beweeg?

Ondersoek: gradiënt by 'n enkele punt op 'n kurwe

Die kurwe gewys is gedefineër deur y = - 2 x 2 - 5 . Punt B is vasgestel by koördinate (0, -5). Die posisie van punt A wissel. Voltooi die tabel hieronder deur die y -koördinate van punt A te bereken vir die gegewe x -koördinate. Bereken dan die gemiddelde gradiënt tussen punte A en B.

x A y A gemiddelde gradiënt

Wat gebeur met die gemiddelde gradiënt soos A in die rigting van B beweeg? Wat gebreur met die gemiddelde gradieënt soos A wegbeweeg van B?Wat is die gemiddelde gradiënt wanneer A oorvleuel met B?

In [link] verander die gradiënt van die reguitlyn wat deur punte A en C gaan soos A nader beweeg aan C. By die punt wat A en C oorvleuel gaan die reguitlyn slegs deur een punt op die kurwe. So 'n lyn is bekend as 'n raaklyn aan die kurwe.

Die gradiënt van die reguitlyn tussen A en C verander soos die punt A between langs die kurwe na C toe. Daar kom 'n punt wat A en C oorvleuel (soos gewys in (c)). By daardie punt is die lyn 'n raaklyn aan die kurwe.

Ons stel dan die idee bekend van 'n gradiënt by 'n enkele punt op 'n kurwe. Die gradiënt by 'n punt op 'n kurwe is eenvoudig die gradiënt van die raaklyn aan die kurwe by die gegewe punt.

Kry die gemiddelde gradiënt tussen twee punte P ( a ; g ( a ) ) en Q ( a + h ; g ( a + h ) ) op die kurwe g ( x ) = x 2 . Kry dan die gemiddelde gradiënt tussen P ( 2 ; g ( 2 ) ) en Q ( 4 ; g ( 4 ) ) . Laastens, verduidelik wat gebeur met die gemiddelde gradiënt soos P nader beweeg aan Q.

  1. x 1 = a
    x 2 = a + h
  2. Deur die funksie g ( x ) = x 2 te gebruik, kry ons:

    y 1 = g ( a ) = a 2
    y 2 = g ( a + h ) = ( a + h ) 2 = a 2 + 2 a h + h 2
  3. y 2 - y 1 x 2 - x 1 = ( a 2 + 2 a h + h 2 ) - ( a 2 ) ( a + h ) - ( a ) = a 2 + 2 a h + h 2 - a 2 a + h - a = 2 a h + h 2 h = h ( 2 a + h ) h = 2 a + h

    Die gemiddelde gradiënt tussen P ( a ; g ( a ) ) en Q ( a + h ; g ( a + h ) ) op die kurwe g ( x ) = x 2 is 2 a + h .

  4. Ons kan die resultaat in [link] gebruik, maar ons sal moet bepaal wat a en h is. Ons doen dit deur te kyk na die definisies van P en Q. Die x -koërdinaat van P is a en die x -koördinaat van Q is a + h . Daarom as ons aanneem dat a = 2 en a + h = 4 , dan is h = 2 .

    Dan is die gemiddelde gradiënt

    2 a + h = 2 ( 2 ) + ( 2 ) = 6
  5. soos punt P nader beweeg aan punt Q, word h kleiner. Dit beteken dat die gemiddelde gradiënt ook kleiner word. As die punt Q oorvleuel met die punt P, is h = 0 en die gemiddelde gradiënt word gegee deur 2 a .

Ons sien nou dat ons die vergelyking kan skryf om die gemiddelde gradiënt op 'n effens anderse manier te bereken. As ons 'n kurwe het gedefineer deur f ( x ) , dan vir twee punte P en Q met P ( a ; f ( a ) ) en Q ( a + h ; f ( a + h ) ) , word die gemiddelde gradiënt tussen P en Q gegee deur f ( x ) :

y 2 - y 1 x 2 - x 1 = f ( a + h ) - f ( a ) ( a + h ) - ( a ) = f ( a + h ) - f ( a ) h

Hierdie resultaat is belangrik om die gradiënt te bereken by 'n punt op 'n kurwe en dit sal in groter detail ondersoek word in Graad 12.


    1. Bepaal die gemiddelde gradiënt van die kurwe f ( x ) = x ( x + 3 ) tussen x =  – 5 en x =  – 3 .
    2. Sê nou wat jy kan aflei oor die funksie f tussen x =  – 5 en x =  – 3 .
  1. A(1;3) is 'n punt op f ( x ) = 3 x 2 .
    1. Bepaal die gradiënt van die kurwe by punt A.
    2. Bepaal nou die vergelyking van die raaklyn by A.
  2. Given: f ( x ) = 2 x 2 .
    1. Bepaal die gemiddelde gradiënt tussen x = - 2 en x = 1 .
    2. Bepaal die gradiënt van die kurwe van f waar x = 2 .

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 11). OpenStax CNX. Sep 20, 2011 Download for free at http://cnx.org/content/col11339/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 11)' conversation and receive update notifications?